Advertisement

An approximate solution method for the fractional version of a singular BVP occurring in the electrohydrodynamic flow in a circular cylindrical conduit

  • A. K. Alomari
  • Vedat Suat ErturkEmail author
  • Shaher Momani
  • Ahmed Alsaedi
Regular Article
  • 7 Downloads

Abstract.

The aim of the present study is to obtain approximate solutions of the fractional counterpart of a boundary value problem that appears in electrohydrodynamic flows by using generalized differential transform method (in short, GDTM). Convergence of the solution problem is proved. The efficiency and applicability of the present method are demonstrated by solving the equation for selected values of the parameters that appear in the model. In addition, residual error computation is adopted to verify the validity of the results.

References

  1. 1.
    S. McKee, R. Watson, J.A. Cuminato, J. Caldwell, M.S. Chen, Z. Angew. Math. Mech. 77, 457 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S.E. Ghasemi, M. Hatami, G.R. Mehdizadeh, D.D. Ganji, J. Electrostat. 72, 47 (2014)CrossRefGoogle Scholar
  3. 3.
    J.E. Paullet, Angew. Math. Mech. 79, 357 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Mastroberardino, Commun. Nonlinear Sci. Numer. Simul. 16, 2730 (2011)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Moghtadaei, H.S. Nik, S. Abbasbandy, Chin. Ann. Math., Ser. B 36, 307 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    O.A. Bég, M. Hameed, T.A. Bég, Int. J. Comput. Methods, Eng. Sci. Mech. 14, 104 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Abbas, V.S. Erturk, S. Momani, Signal Process. 102, 171 (2014)CrossRefGoogle Scholar
  8. 8.
    O.S. Iyiolaa, F.D. Zaman, AIP Adv. 4, 107121 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Çetinkaya, O. Kiymaz, Math. Comput. Model. 57, 2349 (2013)CrossRefGoogle Scholar
  10. 10.
    V.S. Erturk, G. Zaman, B. Alzalg, A. Zeb, S. Momani, Iran. J. Sci. Technol. Trans. Sci. 41, 569 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T.S. Basu, H. Wang, Int. J. Numer. Anal. Model. 9, 658 (2012)MathSciNetGoogle Scholar
  12. 12.
    A.H. Bhrawy, M.A. Zaky, Comput. Math. Appl. 73, 1100 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Zayernouri, G.E. Karniadakis, J. Comput. Phys. 257, 460 (2014)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Dehghan, M. Abbaszadeh, W. Deng, Appl. Math. Lett. 73, 120 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Z. Odibat, S. Momani, V.S. Erturk, Appl. Math. Comput. 197, 467 (2008)MathSciNetGoogle Scholar
  16. 16.
    J.K. Zhou, Differential Transformation and Its Applications for Electrical Circuits (Huazhong University Press, Wuhan, China, 1986) (in Chinese)Google Scholar
  17. 17.
    A. Di Matteo, A. Pirrotta, Commun. Nonlinear Sci. Numer. Simul. 29, 88 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    B. Jang, Appl. Math. Model. 38, 1775 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. El-Ajou, O. Abu Arqub, Z. Al zhour, S. Momani, Entropy 15, 5305 (2013)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. K. Alomari
    • 1
  • Vedat Suat Erturk
    • 2
    Email author
  • Shaher Momani
    • 3
  • Ahmed Alsaedi
    • 4
  1. 1.Department of Mathematics, Faculty of ScienceYarmouk UniversityIrbidJordan
  2. 2.Department of Mathematics, Faculty of Arts and SciencesOndokuz Mayis UniversitySamsunTurkey
  3. 3.Department of Mathematics, Faculty of ScienceThe University of JordanAmmanJordan
  4. 4.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations