Advertisement

Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube

  • N. Ali
  • S. HussainEmail author
  • K. Ullah
  • O. Anwar Bég
Regular Article
  • 25 Downloads

Abstract.

This article explores analytically the dynamics of two-fluid electro-osmotic peristaltic flow through a cylindrical tube. The rheology of the fluid in the central core (inner region or core region) is captured through the Ellis equation. The region adjacent to the wall (outer region or peripheral region) is occupied by a Newtonian fluid. The equations governing the flow in each region are modeled by using the appropriate suppositions of long wavelength and low Reynolds number. Closed form expressions for the stream function corresponding to each region are obtained and utilized to determine the axial pressure gradient and the interface between the inner and the outer regions. The pumping characteristics, trapping and reflux phenomena are investigated in detail with reference to the Ellis model parameters and the electro-kinetic slip velocity. The present model also generalizes earlier studies from the literature which can be retrieved as special cases. The analysis shows that pressure drop at zero volumetric flow rate is elevated with increasing occlusion parameter. Trapping and reflux phenomena are mitigated with increasing electro-osmotic slip and shear-thinning effects. At larger value of the occlusion parameter an increase in the power-law index reduces the magnitude of the pressure drop. Increasing Ellis rheological parameter reduces the pressure drop over the entire range of occlusion parameters for the case when the peripheral region fluid viscosity exceeds that of the core region fluid. The results obtained may be applicable in the modulation of peristaltic pumping in the efficient operation of various industrial and bio-medical devices.

References

  1. 1.
    A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    K.K. Raju, R. Devanathan, Rheol. Acta 11, 170 (1972)CrossRefGoogle Scholar
  3. 3.
    A.M. Provost, W.H. Schwarz, J. Fluid Mech. 279, 177 (1994)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.R. Rao, M. Mishra, J. Non-Newtonian Fluid Mech. 121, 163 (2004)CrossRefGoogle Scholar
  5. 5.
    T. Hayat, Q. Hussain, N. Ali, Physica A 387, 3399 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Hayat, N. Saleem, N. Ali, Commun. Nonlinear Sci. Numer. Simul. 15, 2407 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.R. Rao, M. Mishra, Acta Mech. 168, 35 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Usha, A.R. Rao, Int. J. Eng. Sci. 38, 1355 (2000)CrossRefGoogle Scholar
  9. 9.
    T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, AIP Adv. 6, 045302 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Misra, B. Mallick, A. Sinha, Alex. Eng. J. 57, 391 (2018)CrossRefGoogle Scholar
  11. 11.
    N. Ali, M. Sajid, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer 53, 3319 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Takagi, N.J. Balmforth, J. Fluid Mech. 672, 196 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Takagi, N.J. Balmforth, J. Fluid Mech. 672, 219 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Ali, K. Javid, M. Sajid, AIP Adv. 6, 025111 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Transfer 94, 500 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Tanveer, T. Hayat, F. Alsaadi, A. Alsaedi, Comput. Biol. Med. 82, 71 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Hayat, N. Ali, Z. Abbas, Phys. Lett. A 370, 331 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A.I. Dobrolyubovn, G. Douchyz, J. Theor. Biol. 219, 55 (2002)CrossRefGoogle Scholar
  19. 19.
    J.B. Shukla, R.S. Parihar, B.R.P. Rao, S.P. Gupta, J. Fluid Mech. 97, 225 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J.G. Brasseur, S. Corrsin, Q.L. Nan, J. Fluid Mech. 174, 495 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    A.R. Rao, S. Usha, J. Fluid Mech. 298, 271 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    V.P. Srivastava, M. Saxena, Rheol. Acta 34, 406 (1995)CrossRefGoogle Scholar
  23. 23.
    K. Vajravelu, S. Sreenadh, R.R. Hemadri, K. Murugeshan, Int. J. Fluid Mech. Res. 36, 244 (2009)CrossRefGoogle Scholar
  24. 24.
    J.C. Misra, S.K. Pandey, Int. J. Eng. Sci. 37, 1841 (1999)CrossRefGoogle Scholar
  25. 25.
    M. Mishra, A.R. Rao, J. Biomech. 38, 779 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Vajravelu, S. Sreenadh, V.R. Babu, Quart. Appl. Math. 64, 593 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Kavitha, R.H. Reddy, R. Saravana, S. Sreenadh, Ain Shams Eng. J. 8, 683 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Chakraborty, J. Phys. D 39, 5356 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M. Zhao, S. Wang, S. Wei, J. Non-Newtonian Fluid Mech. 201, 135 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Zhao, C. Yang, Electrophoresis 34, 662 (2013)CrossRefGoogle Scholar
  31. 31.
    D.A. Saville, Annu. Rev. Fluid Mech. 9, 321 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Afonso, M.A. Alves, F.T. Pinho, J. Non-Newtonian Fluid Mech. 159, 50 (2009)CrossRefGoogle Scholar
  33. 33.
    A.M. Afonso, M.A. Alves, F.T. Phino, J. Colloid Interface Sci. 395, 277 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Dhinakaran, A.M. Afonso, M.A. Alves, F.T. Phino, J. Colloid Interface Sci. 344, 513 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    L.L. Ferras, A.M. Afonso, M.A. Alves, F.T. Phino, J.M. Noberga, J. Colloid Interface Sci. 420, 152 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    S. Das, S. Chakraborty, Anal. Chim. Acta 559, 15 (2006)CrossRefGoogle Scholar
  37. 37.
    D. Tripathi, S. Bhushan, O. Anwar Bég, Colloids Surf. A: Physicochem. Eng. Asp. 506, 32 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Tripathi, A. Sharma, O. Anwar Bég, Adv. Powder Technol. 29, 639 (2018)CrossRefGoogle Scholar
  39. 39.
    J. Prakash, D. Tripathi, J. Mol. Liq. 256, 352 (2018)CrossRefGoogle Scholar
  40. 40.
    P. Goswami, J. Chakraborty, A. Bandopadhyay, S. Chakraborty, Microvasc. Res. 103, 41 (2016)CrossRefGoogle Scholar
  41. 41.
    N. Ali, A. Abbasi, I. Ahmed, AIP Adv. 5, 097214 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    J.S. Goud, R.H. Reddy, Int. J. Civ. Eng. Technol. 9, 847 (2018)Google Scholar
  43. 43.
    R.J. Hunter, Zeta Potential in Colloid Sciences: Principles and Applications (Academic Press, London, 1981)Google Scholar
  44. 44.
    H.S. Lew, Y.C. Fung, C.B. Lowenstein, J. Bio-mech. 4, 297 (1971)Google Scholar
  45. 45.
    T.W. Secomb, A.R. Pries, C. R. Phys. 14, 470 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    S. Kim, B. Namgung, P.K. Ong, Y. Cho, K.J. Chun, D. Lim, J. Mech. Sci. Technol. 23, 1718 (2009)CrossRefGoogle Scholar
  47. 47.
    D.A. Fedosov, M. Dao, G.E. Karniadakis, S. Suresh, Ann. Biomed. Eng. 42, 368 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Turkyilmazoglu, Eur. J. Mech. - B/Fluids 65, 184 (2017)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    M. Turkyilmazoglu, Int. J. Heat Mass Transfer 85, 609 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of Aeronautical/Mechanical EngineeringSalford UniversityManchesterUK

Personalised recommendations