Advertisement

Nuclear interactions and medicine

  • Vincenzo Patera
  • Ilaria Mattei
Review
Part of the following topical collections:
  1. Focus Point on Rewriting Nuclear Physics Textbooks: Basic Nuclear Interactions and Their Link to Nuclear Processes in the Cosmos and on Earth

Abstract.

What does antimatter have to do with medical diagnosis? Why can nuclear decays be used to treat tumour? And how can the radiation emitted by the nuclei help doctors to discover our diseases? In modern medicine, science and technology are now a constant presence, even if it is often not evident to the patient–s eye. Nuclear physics is no less important and plays an important role both in the treatment and in the diagnosis. This paper will try to highlight this role by pinpointing this hidden (but not too much) connection and find out some of the many places where nuclear physics is at work in our hospitals. Among the many possibilities the role of nuclear physics in the cure of tumours is given, by making reference to the newest technique of radiotherapy, that is the use of hadron beams (mainly protons and carbon ions), to control deep-seated tumours. Changing completely the landscape, a hint of the impact of nuclear interaction on astronauts is given. In spite of the very different environment the same nuclear mechanism, nuclear fragmentation, is at work and drives both the amount of radiation absorbed by the astronauts or the shielding design of the spacecraft.

References

  1. 1.
    W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer-Verlag, Berlin, Heidelberg, 1987)Google Scholar
  2. 2.
    M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J. Hüfner, K. Shäfer, B. Schürmann, Phys. Rev. C 12, 1888 (1975)CrossRefGoogle Scholar
  4. 4.
    H.L. Bradt, B. Peters, Phys. Rev. 77, 54 (1950)ADSCrossRefGoogle Scholar
  5. 5.
    L. Sihver, D. Mancusi, Radiat. Meas. 44, 3846 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Battistoni, I. Mattei, S. Muraro, Adv. Phys. X 1, 661 (2016)Google Scholar
  7. 7.
    T.T. Böhlen et al., Phys. Med. Biol. 55, 5833 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Mairani et al., Phys. Med. Biol. 55, 4273 (2010)CrossRefGoogle Scholar
  9. 9.
    M.B. Chadwick et al., Nucl. Data 112, 2887 (2011)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    A. Ferrari, CERN2005-10, INFN/TC_05/11, SLAC-R-773L (2005)Google Scholar
  13. 13.
    T.T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ferrari, P.R. Sala, in Proceedings of the Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety, edited by A. Gandini, G. Reffo, Vol. 2 (World Scientific, 1998) p. 424  https://doi.org/10.1142/3319
  15. 15.
    R. Serber, Phys. Rev. 72, 1114 (1947)ADSCrossRefGoogle Scholar
  16. 16.
    H.W. Bertini, ORNL-TM-4134, Oak Ridge (1974)Google Scholar
  17. 17.
    J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    M. Blann, Phys. Rev. C 28, 1648 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    E. Fermi, Prog. Theor. Phys. 5, 570 (1950)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    R.R. Wilson, Radiology 47, 487 (1946)CrossRefGoogle Scholar
  21. 21.
    T. Haberer, GSI Report 94-09 (1994)Google Scholar
  22. 22.
    H. Paganetti, Phys. Med. Biol. 59, 419 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Tommasino et al., Int. J. Part. Thery 2, 428 (2016)CrossRefGoogle Scholar
  24. 24.
    M.C. Morone et al., Phys. Med. Biol. 53, 6045 (2008)CrossRefGoogle Scholar
  25. 25.
    L. Sihver et al., Jpn. J. Med. Phys. 18, 1 (1998)ADSGoogle Scholar
  26. 26.
    F. Tommasino, M. Durante, Cancers 7, 353 (2015)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    A. Knopf, A. Lomax, Phys. Med. Biol. 58, 131 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Paganetti, Phys. Med. Biol. 57, 99 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Agodi et al., Nucl. Instrum. Methods B 283, 1 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    G.W. Bennett et al., Science 200, 1151 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    A.C. Kraan, Front. Oncol. 5, 150 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Parodi, W. Enghardt, T. Haberer, Phys. Med. Biol. 47, 21 (2002)CrossRefGoogle Scholar
  34. 34.
    W. Enghardt et al., Radiother. Oncol. 73, S96 (2004)CrossRefGoogle Scholar
  35. 35.
    T. Nishio et al., Int. J. Rad. Oncol. Biol. Phys. 76, 277 (2010)CrossRefGoogle Scholar
  36. 36.
    F. Fiedler et al., Acta Oncol. Stockholm Sweden 47, 1077 (2008)CrossRefGoogle Scholar
  37. 37.
    A. Knopf et al., Phys. Med. Biol. 54, 4477 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Bauer et al., Radiother. Oncol. 107, 218 (2013)CrossRefGoogle Scholar
  39. 39.
    C.H. Min et al., Appl. Phys. Lett. 89, 183517 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    E. Testa et al., Nucl. Instrum. Methods B 267, 993 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    C. Agodi et al., JINST 7, P03001 (2012)CrossRefGoogle Scholar
  42. 42.
    I. Mattei et al., Phys. Med. Biol. 62, 1438 (2017)CrossRefGoogle Scholar
  43. 43.
    I. Mattei et al., JINST 10, P10034 (2015)CrossRefGoogle Scholar
  44. 44.
    J.C. Polf et al., Phys. Med. Biol. 54, 731 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Verburg, J. Seco, Phys. Med. Biol. 59, 7089 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Llosá et al., Front. Oncol. 6, 14 (2016)CrossRefGoogle Scholar
  47. 47.
    F. Hueso-González et al., Phys. Med. Biol. 60, 6247 (2015)CrossRefGoogle Scholar
  48. 48.
    C. Richter et al., Radiother. Oncol. 118, 232 (2016)CrossRefGoogle Scholar
  49. 49.
    U. Amaldi et al., Nucl. Instrum. Methods A 617, 248 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    P. Henriquet et al., Phys. Med. Biol. 57, 4655 (2012)CrossRefGoogle Scholar
  51. 51.
    C. Agodi et al., Phys. Med. Biol. 57, 5667 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Gwosch et al., Phys. Med. Biol. 58, 3755 (2013)CrossRefGoogle Scholar
  53. 53.
    L. Piersanti et al., Phys. Med. Biol. 59, 1857 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Marafini et al., Acta Physica Pol. A 127, 1465 (2015)CrossRefGoogle Scholar
  55. 55.
    V. Ferrero et al., Sci. Rep. 8, 4100 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    G. Traini et al., Physica Medica 34, 18 (2017)CrossRefGoogle Scholar
  57. 57.
    M. Marafini et al., Phys. Med. Biol. 62, 3299 (2017)CrossRefGoogle Scholar
  58. 58.
    K. Gunzert-Marx et al., Radiat. Prot. Dosim. 110, 595 (2004)CrossRefGoogle Scholar
  59. 59.
    T. Kurosawa et al., Nucl. Sci. Eng. 132, 30 (1999)CrossRefGoogle Scholar
  60. 60.
    H.R. Schelin et al., Nucl. Sci. Eng. 113, 184 (1993)CrossRefGoogle Scholar
  61. 61.
    NuPECC, Nuclear Physics for Medicine, Report 2014Google Scholar
  62. 62.
    D. Satoh et al., Nucl. Instrum. Methods Phys. Res. A 583, 515 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    M. Durante, F.A. Cucinotta, Nat. Rev. Cancer 8, 472 (2008)CrossRefGoogle Scholar
  64. 64.
    G.D. Badhwar, F.A. Cucinotta, P.M. O–Neill, Radiat. Res. 134, 9 (1993)ADSCrossRefGoogle Scholar
  65. 65.
    M. Durante, F.A. Cucinotta, Rev. Mod. Phys. 83, 1245 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    C. Zeitlin et al., Science 340, 1080 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    C. Lobascio et al., Health Phys. 94, 242 (2008)CrossRefGoogle Scholar
  68. 68.
    J. Miller et al., Radiat. Res. 159, 381 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    J.W. Norbury et al., Radiat. Meas. 47, 315 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze di Base Applicate per l’Ingegneria“Sapienza” Università di RomaRomaItaly
  2. 2.INFNSezione di Roma1RomaItaly
  3. 3.INFNSezione di MilanoMilanoItaly

Personalised recommendations