Advertisement

Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation

  • Jian-Guo LiuEmail author
Regular Article
  • 12 Downloads

Abstract.

Exploiting the Hirota's bilinear form, we gain new lump-type solutions of the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. The interaction between lump-type solutions and double-exponential functions are considered. The shape and features for these resulting solutions are described by taking advantage of the three-dimensional plots and corresponding contour plots by choosing appropriate parameters. The physical meaning of these graphs is given.

References

  1. 1.
    W.X. Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Osman, J.A.T. Machado, D. Baleanu, Opt. Quantum Electron. 50, 73 (2018)CrossRefGoogle Scholar
  3. 3.
    M.S. Osman, Nonlinear Dyn. 89, 2283 (2017)CrossRefGoogle Scholar
  4. 4.
    F.H. Lin, S.T. Chen, Q.X. Qu, J.P. Wang, X.W. Zhou, X. Lü, Appl. Math. Lett. 78, 112 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.L. Jia, Y.T. Gao, C.C. Ding, G.F. Deng, Appl. Math. Lett. 74, 193 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.S. Osman, Nonlinear Dyn. 87, 1209 (2017)CrossRefGoogle Scholar
  7. 7.
    W.X. Ma, Z.Y. Qin, X. Lü, Nonlinear Dyn. 84, 923 (2016)CrossRefGoogle Scholar
  8. 8.
    M.S. Osman, Comput. Math. Appl. 75, 1 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Z.Z. Lan, B. Gao, Eur. Phys. J. Plus 132, 512 (2017)CrossRefGoogle Scholar
  10. 10.
    S.L. Jia, Y.T. Gao, L. Hu, Optik 142, 90 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M.S. Osman, H.I. Abdel-Gawad, M.A. El Mahdy, Results Phys. 8, 1054 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    M. Alquran, A. Qawasmeh, J. Appl. Anal. Comput. 4, 221 (2014)MathSciNetGoogle Scholar
  14. 14.
    M.S. Osman, Optik 156, 169 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Liu, J.Q. Du, Z.F. Zeng, B. Nie, Nonlinear Dyn. 88, 655 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.Z. Lan, B. Gao, Appl. Math. Lett. 79, 6 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Z.D. Dai, S.Q. Lin, H.M. Fu, X.P. Zeng, Appl. Math. Comput. 216, 1599 (2010)MathSciNetGoogle Scholar
  18. 18.
    M.S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, Chin. J. Phys. 56, 2500 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Frequenz 68, 525 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M.S. Osman, J.A.T. Machado, Nonlinear Dyn. 93, 733 (2018)CrossRefGoogle Scholar
  21. 21.
    A.M. Wazwaz, S.A. El-Tantawy, Nonlinear Dyn. 84, 1107 (2016)CrossRefGoogle Scholar
  22. 22.
    A.M. Wazwaz, M.S. Osman, Comput. Math. Appl. 76, 276 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.G. Liu, Y. Tian, J.G. Hu, Appl. Math. Lett. 79, 162 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A.M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 17, 491 (2012)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Wang, M.D. Chen, X. Li, B. Li, Z. Naturforsch. A 72, 419 (2017)ADSGoogle Scholar
  26. 26.
    J. Lv, S. Bilige, Nonlinear Dyn. 90, 2119 (2017)CrossRefGoogle Scholar
  27. 27.
    H.Q. Sun, A.H. Chen, Appl. Math. Lett. 68, 55 (2016)CrossRefGoogle Scholar
  28. 28.
    J.Y. Yang, W.X. Ma, Comput. Math. Appl. 73, 220 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    T.C. Kofane, M. Fokou, A. Mohamadou, E. Yomba, Eur. Phys. J. Plus 132, 465 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Cheng, Y. Zhang, Mod. Phys. Lett. B 31, 1750224 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    W.X. Ma, J. Geom. Phys. 133, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X.E. Zhang, Y. Chen, Nonlinear Dyn. 90, 755 (2017)CrossRefGoogle Scholar
  33. 33.
    C.J. Wang, Nonlinear Dyn. 87, 2635 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Lü, S.T. Chen, W.X. Ma, Nonlinear Dyn. 86, 523 (2016)CrossRefGoogle Scholar
  35. 35.
    W.X. Ma, X. Yong, H.Q. Zhang, Comput. Math. Appl. 745, 289 (2017)Google Scholar
  36. 36.
    H.Q. Zhang, W.X. Ma, Nonlinear Dyn. 87, 2305 (2017)CrossRefGoogle Scholar
  37. 37.
    C.H. Ma, A.P. Deng, Commun. Theor. Phys. 65, 546 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Y.N. Tang, S.Q. Tao, M.L. Zhou, Q. Guan, Nonlinear Dyn. 89, 429 (2017)CrossRefGoogle Scholar
  39. 39.
    W.X. Ma, Int. J. Nonlinear Sci. Numer. 17, 355 (2016)CrossRefGoogle Scholar
  40. 40.
    Z.L. Zhao, Y. Chen, B. Han, Mod. Phys. Lett. B 31, 1750157 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    M. Boiti, J.J.P. Leon, M. Manna, F. Pempinelli, Inverse Probl. 2, 271 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    M.S. Osman, Pramana 88, 67 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Chen, Q. Wang, Chin. Phys. 13, 1796 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    C.Q. Dai, Int. J. Theor. Phys. 47, 1286 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    A.M. Wazwaz, Nonlinear Anal. 72, 1314 (2010)MathSciNetCrossRefGoogle Scholar
  46. 46.
    C.Q. Dai, G.Q. Zhou, Chin. Phys. 16, 1201 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    E.G. Fan, J. Phys. A 42, 095206 (2009)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    H. Ruan, Phys. Scr. 67, 240 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    M.S. Osman, H.I. Abdel-Gawad, Eur. Phys. J. Plus 130, 215 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ComputerJiangxi University of Traditional Chinese MedicineJiangxiChina
  2. 2.School of scienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations