Darboux transformations for the massless Dirac equation with matrix potential: Construction of zero-energy states
Regular Article
First Online:
- 14 Downloads
Abstract.
We develop a new method for constructing zero-energy states of the massless Dirac equation with a matrix potential. Our method is based on a Darboux transformation for Schrödinger-type equations featuring quadratically energy-dependent potentials.
References
- 1.K.S. Novoselov, A.K. Geim, S.M. Morozov, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
- 2.A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
- 3.A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
- 4.M. Ramezani Masir, A. Matulis, F.M. Peeters, Phys. Rev. B 79, 155451 (2009)ADSCrossRefGoogle Scholar
- 5.V. Jakubsky, Phys. Rev. D 91, 045039 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 6.J.G. Checkelsky, L. Li, N.P. Ong, Phys. Rev. Lett. 100, 206801 (2008)ADSCrossRefGoogle Scholar
- 7.P. Roy, T.K. Ghosh, K. Bhattacharya, J. Phys.: Condens. Matter 24, 055301 (2012)ADSGoogle Scholar
- 8.P. Ghosh, P. Roy, Phys. Lett. A 380, 567 (2016)ADSCrossRefGoogle Scholar
- 9.C.L. Ho, P. Roy, EPL 108, 20004 (2014)ADSCrossRefGoogle Scholar
- 10.C.A. Downing, M.E. Portnoi, J. Phys.: Condens. Matter 29, 315301 (2017)Google Scholar
- 11.R.R. Hartmann, M.E. Portnoi, Sci. Rep. 7, 11599 (2017)ADSCrossRefGoogle Scholar
- 12.R.R. Hartmann, M.E. Portnoi, Phys. Rev. A 95, 062110 (2017)ADSCrossRefGoogle Scholar
- 13.M. Erementchouk, P. Mazumder, M.A. Khan, M.N. Leuenberger, J. Phys.: Condens. Matter 28, 115501 (2016)ADSGoogle Scholar
- 14.C.A. Downing, M.E. Portnoi, Nat. Commun. 8, 897 (2017)ADSCrossRefGoogle Scholar
- 15.F. Correa, V. Jakubsky, Phys. Rev. A 95, 033807 (2017)ADSCrossRefGoogle Scholar
- 16.E. Pozdeeva, A. Schulze-Halberg, J. Math. Phys. 51, 113501 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 17.A.V. Yurov, Phys. Lett. A 225, 51 (1997)ADSMathSciNetCrossRefGoogle Scholar
- 18.G. Darboux, C. R. Acad. Sci. 94, 1456 (1882)Google Scholar
- 19.F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
- 20.A. Contreras-Astorga, A. Schulze-Halberg, J. Math. Phys. 55, 103506 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 21.A. Schulze-Halberg, P. Roy, J. Phys. A 50, 365205 (2017)MathSciNetCrossRefGoogle Scholar
- 22.A. Bergvall, T. Lofwander, Phys. Rev. B 87, 205431 (2013)ADSCrossRefGoogle Scholar
- 23.R. Olsen, R. van Gelderen, C.M. Smith, Phys. Rev. B 87, 115414 (2013)ADSCrossRefGoogle Scholar
- 24.J. Lin, Y.-S. Li, X.-M. Qian, Phys. Lett. A 362, 212 (2007)ADSMathSciNetCrossRefGoogle Scholar
Copyright information
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019