Advertisement

Nonlinear scattering and its transfer matrix formulation in one dimension

  • Ali MostafazadehEmail author
Regular Article
  • 19 Downloads

Abstract.

We present a systematic formulation of the scattering theory for nonlinear interactions in one dimension and develop a nonlinear generalization of the transfer matrix that has a composition property similar to that of its linear analog. We offer alternative characterizations of spectral singularities, unidirectional reflectionlessness and invisibility, and nonreciprocal transmission for nonlinear scattering systems, and examine the application of our general results in addressing the scattering problem for nonlinear single- and double-\( \delta\)-function potentials.

References

  1. 1.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edition (Dover, New York, 2013)Google Scholar
  2. 2.
    J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza, Phys. Rep. 395, 357 (2004)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Mostafazadeh, Phys. Rev. Lett. 110, 260402 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    W.A. Strauss, in Scattering Theory in Mathematical Physics, edited by J.A. Lavita, J.-P. Marchand (Reidel, Dordrecht, 1974) pp. 53--78Google Scholar
  5. 5.
    A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D.N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Regensburger, C. Bersch, M.A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Nature 488, 167 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Mostafazadeh, Phys. Rev. A 87, 012103 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. Mostafazadeh, N. Oflaz, Phys. Lett. A 381, 3548 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Jalas et al., Nat. Photon. 7, 579 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M.I. Molina, C.A. Bustamante, Am. J. Phys. 70, 67 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    B.A. Malomed, M.Y. Azbel, Phys. Rev. B 47, 10402 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mostafazadeh, J. Phys. A 39, 13495 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Mostafazadeh, in Parity-time Symmetry and Its Applications, edited by D. Christodoulides, J. Yang (Springer, Singapore, 2018) pp. 75--121, https://doi.org/arXiv:1711.05450,  https://doi.org/10.1007/978-981-13-1247-2_4
  15. 15.
    H. Ghaemi-Dizicheh, A. Mostafazadeh, M. Sarisaman, J. Opt. 19, 105601 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A. Mostafazadeh, Phys. Rev. A 83, 045801 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A.-S. Gadallah, K. Nomenyo, C. Couteau, D.J. Rogers, G. Lerondel, App. Phys. Lett. 102, 171105 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Mostafazadeh, J. Phys. A 45, 444024 (2012)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Phys. Rev. Lett. 105, 053901 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Science 331, 889 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    S. Longhi, Physics 3, 61 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Longhi, Phys. Rev. A 82, 031801 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003)Google Scholar
  24. 24.
    L.L. Sánchez-Soto, J.J. Monzóna, A.G. Barriuso, J.F. Cariñena, Phys. Rep. 513, 191 (2012)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P.S. Moya, M. Ramírez, M.I. Molinac, Am. J. Phys. 75, 1158 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    F.Y. Wang, G.X. Li, H.L. Tam, K.W. Cheah, S.N. Zhu, Appl. Phys. Lett. 92, 211109 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P. Yeh, A. Yariv, C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    P. Pereyra, Phys. Rev. Lett. 80, 2677 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    D.J. Griffiths, C.A. Steinke, Am. J. Phys. 69, 137 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    F. Loran, A. Mostafazadeh, Ann. Phys. (N.Y.) 359, 230 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Mostafazadeh, J. Phys. A 47, 505303 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    V.V. Konotop, J. Yang, D.A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    F. Loran, A. Mostafazadeh, Phys. Rev. A 93, 042707 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    F. Loran, A. Mostafazadeh, Proc. R. Soc. A 472, 20160250 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    F. Loran, A. Mostafazadeh, Opt. Lett. 42, 5250 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    F. Loran, A. Mostafazadeh, Phys. Rev. A 96, 063837 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    F. Loran, A. Mostafazadeh, J. Phys. A 51, 335302 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departments of Mathematics and PhysicsKoç UniversityIstanbulTurkey

Personalised recommendations