Advertisement

A study on non-Newtonian transport phenomena in a mixed convection stagnation point flow with numerical simulation and stability analysis

  • Kohilavani Naganthran
  • Roslinda NazarEmail author
  • Ioan Pop
Regular Article
  • 1 Downloads

Abstract.

The non-Newtonian fluid model is vital to visualize the fluid flows in the latest industrial materials so that the work productivity can be enhanced. Thus, this numerical study inspects the behaviour of the steady mixed convection flow near a stagnation point along a permeable vertical stretching/shrinking flat plate in a Powell-Eyring fluid. A proper similarity transformation simplifies the system of partial differential equations into a system of ordinary differential equations. The collocation formula in the MATLAB software then solves the system of similarity equations. The numerical results have been presented based on two different values of the Prandtl number, as the other governing parameters are varied. When the Prandtl number is 0.015, the availability of the second solution (lower branch solution) is within a certain range of the opposing flow, but the shrinking plate influences the presence of the dual solutions at the assisting flow. The usage of the Prandtl number as 23 restricts the existence of a critical point. Stability analysis shows that the first solution (upper branch solution) is a stable solution whereas the second solution is not a stable solution.

References

  1. 1.
    R.E. Powell, H. Eyring, Nature 154, 427 (1944)ADSCrossRefGoogle Scholar
  2. 2.
    T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, PLoS ONE 9, e103214 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    G.A. Gaffar, V.R. Prasad, B. Vijaya, J. Braz. Soc. Mech. Sci. Eng. 7, 2747 (2017)CrossRefGoogle Scholar
  4. 4.
    E.G. Fisher, Extrusion of Plastics (Wiley, New York, 1967)Google Scholar
  5. 5.
    C. Rauwendaal, Polymer Extrusion (Hanser Publications, Cincinnati, 2013)Google Scholar
  6. 6.
    K. Hiemenz, Dinglers Polytech. J. 326, 321 (1911)Google Scholar
  7. 7.
    F. Homann, Z. Angew. Math. Mech. 16, 153 (1936)CrossRefGoogle Scholar
  8. 8.
    L. Howarth, Philos Mag. 42, 1433 (1951)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, Berlin, Heidelberg, 2016)Google Scholar
  10. 10.
    P. Weidman, M.R. Turner, Eur. J. Mech. B Fluid 61, 144 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Szewczyk, Trans. ASME J. Heat Transf. 86, 501 (1964)CrossRefGoogle Scholar
  12. 12.
    J.H. Merkin, J. Fluid Mech. 35, 439 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    N. Ramachandran, T.S. Chen, B.F. Armaly, Trans. ASME J. Heat Transf. 110, 373 (1988)CrossRefGoogle Scholar
  14. 14.
    F.M. Ali, R. Nazar, N.M. Arifin, I. Pop, J. Heat Transf. 133, 0225011 (2011)Google Scholar
  15. 15.
    S. Gupta, D. Kumar, J. Singh, Int. J. Heat Mass Transfer 118, 378 (2018)CrossRefGoogle Scholar
  16. 16.
    B.C. Sakiadis, AIChE J. 7, 221 (1961)CrossRefGoogle Scholar
  17. 17.
    L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)CrossRefGoogle Scholar
  18. 18.
    L.J. Grubka, K.M. Bobba, Heat Trans. T ASME 107, 248 (1985)CrossRefGoogle Scholar
  19. 19.
    C.Y. Wang, Z. Angew. Math. Mech. 69, 418 (1989)CrossRefGoogle Scholar
  20. 20.
    P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977)CrossRefGoogle Scholar
  21. 21.
    P. Carragher, L.J. Crane, Z. Angew. Math. Mech. 62, 564 (1982)CrossRefGoogle Scholar
  22. 22.
    C.Y. Wang, Quart. Appl. Math. 48, 601 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Davey, J. Fluid Mech. 10, 593 (1961)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Goldstein, J. Fluid Mech. 21, 33 (1965)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P.A. Libby, AIAA J. 5, 507 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    M. Miklavčič, C.Y. Wang, Quart. Appl. Math. 64, 283 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    T.G. Fang, J. Zhang, S.S. Yao, Chin. Phys. Lett. 26, 0147031 (2009)Google Scholar
  28. 28.
    J.H. Merkin, J. Eng. Math. 20, 171 (1985)CrossRefGoogle Scholar
  29. 29.
    J.H. Merkin, J. Eng. Math. 14, 301 (1980)CrossRefGoogle Scholar
  30. 30.
    N. Bachok, A. Ishak, I. Pop, Int. J. Therm. Sci. 49, 1663 (2010)CrossRefGoogle Scholar
  31. 31.
    K. Merrill, M. Beauchesne, J. Previte, J. Paullet, P. Weidman, Int. J. Heat Mass Transfer 49, 4681 (2006)CrossRefGoogle Scholar
  32. 32.
    P.D. Weidman, D.G. Kubitschek, A.M.J. Davis, Int. J. Eng. Sci. 44, 730 (2006)CrossRefGoogle Scholar
  33. 33.
    P.D. Weidman, M.A. Sprague, Acta Mech. 219, 219 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Int. J. Heat Mass Transfer 55, 1817 (2012)CrossRefGoogle Scholar
  35. 35.
    T. Hayat, B. Ashraf, S.A. Shehzad, E. Abouelmagd, Int. J. Numer. Methods Heat Fluid Flow 25, 593 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Panigrahi, M. Reza, A.K. Mishra, Proc. Eng. 127, 645 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Panigrahi, M. Reza, A.K. Mishra, Appl. Math. Mech. 35, 1525 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, J. Aerospace Eng. 30, 040160771 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Javed, N. Ali, Z. Abbas, M. Sajid, Chem. Eng. Commun. 200, 327 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, J. Assoc. Arab. Univ. Basic Appl. Sci. 23, 75 (2017)Google Scholar
  41. 41.
    P.M. Krishna, N. Sandeep, J.V.R. Reddy, V. Sugunamma, J. Nav. Archit. Mar. Eng. 13, 89 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Zaman, M.A. Shah, M. Ibrahim, Am. J. Comput. Math. 3, 313 (2013)CrossRefGoogle Scholar
  43. 43.
    N.A. Khan, F. Sultan, N.A. Khan, Int. J. Chem. React. Eng. 13, 37 (2015)Google Scholar
  44. 44.
    C. Vittal, M.C.K. Reddy, M. Monica, J. Prog. Res. Math. 8, 1290 (2016)Google Scholar
  45. 45.
    S.A. Gaffar, V.R. Prasad, E.K. Reddy, Alex. Eng. J. 55, 875 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Jalil, S. Asghar, S.M. Imran, Int. J. Heat Mass Transfer 65, 73 (2013)CrossRefGoogle Scholar
  47. 47.
    A.V. Roşca, I. Pop, Int. J. Heat Mass Transfer 71, 321 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Yürüsoy, Turk. J. Eng. Env. Sci. 27, 299 (2003)Google Scholar
  49. 49.
    T. Hayat, M. Farooq, J. Thermophys. Heat Transf. 27, 761 (2013)CrossRefGoogle Scholar
  50. 50.
    N.C. Roşca, I. Pop, Int. J. Heat Mass Transfer 65, 102 (2013)CrossRefGoogle Scholar
  51. 51.
    S.D. Harris, D.B. Ingham, I. Pop, Transp. Porous Med. 77, 267 (2009)CrossRefGoogle Scholar
  52. 52.
    L.F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB (Cambridge University Press, 2003)Google Scholar
  53. 53.
    T. Hayat, S. Makhdoom, M. Awais, S. Saleem, M.M. Rashidi, Appl. Math. Mech. 37, 919 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kohilavani Naganthran
    • 1
  • Roslinda Nazar
    • 1
    Email author
  • Ioan Pop
    • 2
  1. 1.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations