Advertisement

Phase-space quantum profile of Pöschl-Teller two-level systems

  • A. E. BernardiniEmail author
  • R. da Rocha
Regular Article
  • 14 Downloads

Abstract.

The quantum phase-space dynamics driven by hyperbolic Pöschl-Teller (PT) potentials is investigated in the context of the Weyl-Wigner quantum mechanics. The obtained Wigner functions for quantum superpositions of ground and first excited states exhibit some non-classical and non-linear patterns which are theoretically tested and quantified according to a non-Gaussian continuous variable framework. It comprises the computation of quantifiers of non-classicality for an anharmonic two-level system where non-Liouvillian features are identified through the phase-space portrait of quantum fluctuations. In particular, the associated non-Gaussian profiles are quantified by measures of kurtosis and negative entropy. As expected from the PT quasi-harmonic profile, our results suggest that quantum wells can work as an experimental platform that approaches the Gaussian behavior in the investigation of the interplay between classical and quantum scenarios. Furthermore, it is also verified that the Wigner representation admits the construction of a two-particle bipartite quantum system of continuous variables, A and B , which are shown to be separable under Gaussian and non-Gaussian continuous variable criteria.

References

  1. 1.
    G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)ADSCrossRefGoogle Scholar
  2. 2.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)Google Scholar
  3. 3.
    D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 66, 101701 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A.E. Bernardini, R. da Rocha, AHEP 2013, 304980 (2013)Google Scholar
  6. 6.
    A.E. Bernardini, R. da Rocha, Phys. Lett. A 380, 2279 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    P.G. Kevrekidis, J. Cuevas-Maraver, A. Saxena, F. Cooper, A. Khare, Phys. Rev. E 92, 042901 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001)Google Scholar
  9. 9.
    A.E. Bernardini, R. da Rocha, Phys. Lett. B 717, 238 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Das, Integrable Models (World Scientific, Singapore, 1989)Google Scholar
  11. 11.
    D.P. Jatkar, Nucl. Phys. B 395, 167 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    E. Witten, Phys. Rev. D 44, 314 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Gremm, Phys. Lett. B 478, 434 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    N. Barbosa-Cendejas, A. Herrera-Aguilar, M.A. Reyes Santos, C. Schubert, Phys. Rev. D 77, 126013 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.E. Bernardini, O. Bertolami, Phys. Lett. B 726, 512 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J. Radovanovic, V. Milanovic, Z. Ikonic, D. Indjin, Phys. Lett. A 269, 179 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    E. Rasanen, T. Blasi, M.F. Borunda, E.J. Heller, Phys. Rev. B 86, 205308 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    T. Micklitz, A. Levchenko, Phys. Rev. Lett. 106, 196402 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    C.-S. Park, Phys. Rev. B 92, 165422 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    H. Yildirim, M. Tomak, Phys. Rev. B 72, 115340 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    H. Yildirim, M. Tomak, J. Appl. Phys. 99, 093103 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    O. de los Santos Sánchez, J. Phys. A 51, 305303 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S.M. Al-Marzoug, S.M. Al-Amoudi, U. Al Khawaja, H. Bahlouli, B.B. Baizakov, Phys. Rev. E 83, 026603 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    E. Wigner, Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  25. 25.
    T. Curtright, D. Fairlie, C. Zachos, Phys. Rev. D 52, 025002 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    G.W. Bund, M.C. Tijero, Phys. Rev. A 61, 052114 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    W.B. Case, Am. J. Phys. 76, 937 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    O. Steuernagel, D. Kakofengitis, G. Ritter, Phys. Rev. Lett. 110, 030401 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D. Kakofengitis, M. Oliva, O. Steuernagel, Phys. Rev. A 95, 022127 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    A. Donoso, C.C. Martens, Phys. Rev. Lett. 87, 223202 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    N.L. Balazs, A. Voros, Ann. Phys. 1, 123 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    L.E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific, Singapore, 1998)Google Scholar
  33. 33.
    F. Albarelli, M.G. Genoni, M.G.A. Paris, A. Ferraro, Resource theory of quantum non-Gaussianity and Wigner negativity, arXiv:1804.05763 [quant-ph]Google Scholar
  34. 34.
    J. Park, J. Lee, K. Baek, S.-W. Ji, H. Nha, Faithful Measure of Quantum non-Gaussianity via quantum relative entropy, arXiv:1809.02999 [quant-ph]Google Scholar
  35. 35.
    J. Park, J. Lee, S.-W. Ji, H. Nha, Phys. Rev. A 96, 052324 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    I.S. Gradshteyn, I. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1994)Google Scholar
  37. 37.
    A. Ferraro, M.G.A. Paris, Phys. Rev. Lett. 108, 260403 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    W. Domcke, P. Hänggi, D. Tannor (Editors), Chem. Phys. 217, 117 (1997)CrossRefGoogle Scholar
  39. 39.
    A.E. Bernardini, O. Bertolami, EPL 120, 20002 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    A.E. Bernardini, P. Leal, O. Bertolami, JCAP 02, 025 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    F. Albarelli, A. Ferraro, M. Paternostro, M.G.A. Paris, Phys. Rev. A 93, 032112 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    C. Hughes, M.G. Genoni, T. Tufarelli, M.G.A. Paris, M.S. Kim, Phys. Rev. A 90, 013810 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    M.G. Genoni, M.G.A. Paris, K. Banaszek, Phys. Rev. A 76, 042327 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    M.G. Genoni, M.G.A. Paris, K. Banaszek, Phys. Rev. A 78, 060303 (2008)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Ferraro, S. Olivares, M.G.A. Paris, Gaussian states in continuous variable quantum information (Bibliopolis, Napoli, 2005)Google Scholar
  46. 46.
    A.S. Holevo, M. Sohma, O. Hirota, Phys. Rev. A 59, 1820 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    A. Serafini, F. Illuminati, S. De Siena, J. Phys. B 37, L21 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    R. Alves, C. Bastos, O. Bertolami, Entangled States and the Gravitational Quantum Well, arXiv:1607.08155 [gr-qc]Google Scholar
  49. 49.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    P. Horodecki, Phys. Lett. A 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    R. Simon, E.C.G. Sudarshan, N. Mukunda, Phys. Rev. A 36, 3868 (1987)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    A. Miranowicz, M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. A 80, 052303 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    R. Simon, Phys. Rev. Lett. 84, 2726 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    M.G.A. Paris, M.G. Genoni, N. Shammah, B. Teklu, Phys. Rev. A 90, 012104 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    S. Dey, A. Fring, Phys. Rev. A 88, 022116 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    A.E. Bernardini, R. da Rocha, Phys. Lett. B 762, 107 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    R.A.C. Correa, D.M. Dantas, C.A.S. Almeida, R. da Rocha, Phys. Lett. B 755, 358 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    A.E. Bernardini, N.R.F. Braga, R. da Rocha, Phys. Lett. B 765, 81 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de São CarlosSão CarlosBrazil
  2. 2.Centro de Matemática, Computação e CogniçãoUniversidade Federal do ABC - UFABCSanto AndréBrazil

Personalised recommendations