Advertisement

Sodium dodecyl sulfate microaggregates with diversely developed surfaces: Formation from free microdroplets of colloidal suspension

  • Justice Archer
  • Maciej KolwasEmail author
  • Mariusz Woźniak
  • Daniel Jakubczyk
  • Krystyna Kolwas
  • Gennadiy Derkachov
  • Tomasz Wojciechowski
Open Access
Regular Article
  • 68 Downloads

Abstract.

Unsupported drying of microdroplets of colloidal suspension can lead to the formation of complex micro-morphologies with quasi-spherical symmetry. Herein, drying of levitating microdroplets of suspension of SiO2 nanospheres in diethylene glycol (DEG) with sodium dodecyl sulfate (SDS) is reported as a method for producing such microstructures with diversely developed surfaces. Dried products are “soft-landed” on a substrate and studied with scanning electron microscopy (SEM). The smallest SDS/SiO2 composites with the surface formed of crystallised SDS and interior filled with SiO2 nanospheres preserve the spherical symmetry. Larger microdroplets with higher initial mass fractions of SDS dry up to developed microstructures with SiO2 nanospheres arranged in-between the crystallised SDS flakes which are similar to curved lobe cabbage leaves or “desert rose”-like structures with radially directed SDS crystals. Largest microdroplets with highest initial mass fractions of SDS formed doughnut-shaped micro-containers filled with aggregated SiO2 nanospheres. In all these, SiO2 nanospheres served as a frame for the SDS crystallisation.

References

  1. 1.
    Orlin D. Velev, Abraham M. Lenhoff, Eric W. Kaler, Science 287, 2240 (2000)Google Scholar
  2. 2.
    Teresa Brugarolas, Fuquan Tu, Daeyeon Lee, Soft Matter 9, 9046 (2013)Google Scholar
  3. 3.
    Debasis Sen, Jose Savio Melo, Jitendra Bahadur, Subhasish Mazumder, Shovit Bhattacharya, Stanislaus Francis D’Souza, Henrich Frielinghaus, Gunter Goerigk, Rudolf Loidl, Soft Matter 7, 5423 (2011)Google Scholar
  4. 4.
    Shin-Hyun Kim, Seog-Jin Jeon, Seung-Man Yang, J. Am. Chem. Soc. 130, 6040 (2008)Google Scholar
  5. 5.
    Álvaro G. Marín, Hanneke Gelderblom, Arturo Susarrey-Arce, Arie van Houselt, Leon Lefferts, Johannes G.E. Gardeniers, Detlef Lohse, Jacco H. Snoeijer, Proc. Natl. Acad. Sci. 109, 16455 (2012)Google Scholar
  6. 6.
    N. Tsapis, E.R. Dufresne, S.S. Sinha, C.S. Riera, J.W. Hutchinson, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 018302 (2005)Google Scholar
  7. 7.
    Eran Rabani, David R. Reichman, Phillip L. Geissler, Louis E. Brus, Nature 426, 271 (2003)Google Scholar
  8. 8.
    A.D. Dinsmore, Ming F. Hsu, M.G. Nikolaides, Manuel Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)Google Scholar
  9. 9.
    Asep Suhendi, Asep Bayu Dani Nandiyanto, Muhammad Miftahul Munir, Takashi Ogi, Leon Gradon, Kikuo Okuyama, Langmuir 29, 13152 (2013)Google Scholar
  10. 10.
    B. Binks, T. Horozov, Colloidal Particles at Liquid Interfaces (Cambridge University Press, 2006)Google Scholar
  11. 11.
    Vinayak Rastogi, Sonia Melle, Oscar G. Calderón, Antonio A. García, Manuel Marquez, Orlin D. Velev, Adv. Mater. 20, 4263 (2008)Google Scholar
  12. 12.
    Enrico Sowade, Thomas Blaudeck, Reinhard R. Baumann, Cryst. Growth Design 16, 1017 (2016)Google Scholar
  13. 13.
    Ji-Eun Park, Danielle Reifsnyder Hickey, Sangmi Jun, Seulki Kang, Xiaole Hu, Xi-Jun Chen, So-Jung Park, Adv. Funct. Mater. 26, 7791 (2016)Google Scholar
  14. 14.
    Jimmy Perdana, Martijn B. Fox, Maarten A.I. Schutyser, Remko M. Boom, Food Bioprocess Technol. 6, 964 (2013)Google Scholar
  15. 15.
    Alejandro Sosnik, Katia P. Seremeta, Adv. Colloid Interface Sci. 223, 40 (2015)Google Scholar
  16. 16.
    Asep Bayu Dani Nandiyanto, Kikuo Okuyama, Adv. Powder Technol. 22, 1 (2011)Google Scholar
  17. 17.
    Vicente João, Pinto João, Menezes José, Gaspar Filipe, Powder Technol. 247, 1 (2013)Google Scholar
  18. 18.
    F. Moreau, P. Colinet, S. Dorbolo, Phys. Fluids 25, 091111 (2013)Google Scholar
  19. 19.
    M. Wozniak, G. Derkachov, K. Kolwas, J. Archer, T. Wojciechowski, D. Jakubczyk, M. Kolwas, Langmuir 31, 7860 (2015)Google Scholar
  20. 20.
    J. Archer, M. Kolwas, D. Jakubczyk, G. Derkachov, M. Wozniak, K. Kolwas, J. Quant. Spectrosc. Radiat. Transf. 202, 168 (2017)Google Scholar
  21. 21.
    Wolfgang Paul, Rev. Mod. Phys. 62, 531 (1990)Google Scholar
  22. 22.
    Davis E. James, Schweiger Gustav, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, Heidelberg, 2002)Google Scholar
  23. 23.
    E. James Davis, A.K. Ray, J. Colloid Interface Sci. 75, 566 (1980)Google Scholar
  24. 24.
    Robert Hołyst, Marek Litniewski, Daniel Jakubczyk, Marcin Zientara, Mariusz Woźniak, Soft Matter 9, 7766 (2013)Google Scholar
  25. 25.
    Robert Hołyst, Marek Litniewski, Daniel Jakubczyk, Soft Matter 13, 5858 (2017)Google Scholar
  26. 26.
    D.S. Lapitskiy, V.S. Filinov, L.V. Deputatova, L.M. Vasilyak, V.I. Vladimirov, V.Ya. Pecherkin, High Temperature 53, 1 (2015)Google Scholar
  27. 27.
    Geon Dae Moon, Sungwook Ko, Yuho Min, Jie Zeng, Younan Xia, Unyong Jeong, Nano Today 6, 186 (2011)Google Scholar
  28. 28.
    D. Sen, S. Mazumder, J.S. Melo, Arshad Khan, S. Bhattyacharya, S.F. D’Souza, Langmuir 25, 6690 (2009)Google Scholar
  29. 29.
    Debasis Sen, Jitendra Bahadur, Shamsuddin Mazumder, Verma G., Puthusserickal A. Hassan, Shovit Bhattacharya, Vijai K., Pankaj Doshi, Soft Matter 8, 1955 (2012)Google Scholar
  30. 30.
    George Karapetsas, Kirti Chandra Sahu, Omar K. Matar, Langmuir 32, 6871 (2016)Google Scholar
  31. 31.
    Peter A. Kralchevsky, Nikolai D. Denkov, Curr. Opin. Colloid Interface Sci. 6, 383 (2001)Google Scholar
  32. 32.
    Joshua R. Trantum, Mark L. Baglia, Zachary E. Eagleton, Raymond L. Mernaugh, Frederick R. Haselton, Lab Chip 14, 315 (2014)Google Scholar
  33. 33.
    Rong Guo, Liu Tianqing, Yu Weili, Langmuir 15, 624 (1999)Google Scholar
  34. 34.
    P. Kékicheff, J. Colloid Interface Sci. 131, 133 (1989)Google Scholar
  35. 35.
    Emil Chibowski, Aleksandra Szczes, Lucyna Holysz, Langmuir 21, 8114 (2005)Google Scholar
  36. 36.
    Ruhina M. Miller, Andreas S. Poulos, Eric S.J. Robles, Nicholas J. Brooks, Oscar Ces, João T. Cabral, Cryst. Growth Design 16, 3379 (2016)Google Scholar
  37. 37.
    Yang Zhao, Tao Yu, Xin Tan, Chuang Xie, Shucong Wang, Dalton Trans. 44, 20475 (2015)Google Scholar
  38. 38.
    Donya Ramimoghadam, Mohd Zobir Bin Hussein, Yun Hin Taufiq-Yap, Int. J. Mol. Sci. 13, 13275 (2012)Google Scholar
  39. 39.
    Adam J. Blanch, Joe G. Shapter, J. Phys. Chem. B 118, 6288 (2014)Google Scholar
  40. 40.
    Yu Miao, Haijiao Zhang, Shuai Yuan, Zheng Jiao, Xuedong Zhu, J. Colloid Interface Sci. 462, 9 (2016)Google Scholar
  41. 41.
    Geetanjali Mishra, Barsha Dash, Ajit Dash, I.N. Bhattacharya, Cryst. Res. Technol. 51, 433 (2016)Google Scholar
  42. 42.
    Binita Pathak, Saptarshi Basu, J. Appl. Phys. 117, 244901 (2015)Google Scholar
  43. 43.
    Gröger Henriette, Kind Christian, Leidinger Peter, Roming Marcus, Feldmann Claus, Materials 3, 4355 (2010)Google Scholar
  44. 44.
    Hartmut Ulmke, Thomas Wriedt, Klaus Bauckhage, Chem. Eng. Technol. 24, 265 (2001)Google Scholar
  45. 45.
    Daniel C. Taflin, S.H. Zhang, Theresa Allen, E. James Davis, AIChE J. 34, 1310 (1988)Google Scholar
  46. 46.
    E.J. Davis, M.A. Bridges, J. Aerosol Sci. 25, 1179 (1994)Google Scholar
  47. 47.
    Sofija Vulgarakis Minov, Frédéric Cointault, Jürgen Vangeyte, Jan G. Pieters, David Nuyttens, Crop Protection 69, 18 (2015)Google Scholar
  48. 48.
    S. Manley, J.M. Skotheim, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 218302 (2005)Google Scholar
  49. 49.
    Jariya Buajarern, Laura Mitchem, Jonathan P. Reid, J. Phys. Chem. A 111, 11852 (2007)Google Scholar
  50. 50.
    G. Derkachov, K. Kolwas, D. Jakubczyk, M. Zientara, M. Kolwas, J. Phys. Chem. C 112, 16919 (2008)Google Scholar
  51. 51.
    M. Mezhericher, A. Levy, I. Borde, Chem. Eng. Sci. 66, 884 (2011)Google Scholar
  52. 52.
    Hans R. Pruppacher, James D. Klett, Microphysics of clouds and precipitation (Kluwer Academic Publishers, Dordrecht, Boston, 1940) 2nd revised and enlarged edition (1997)Google Scholar
  53. 53.
    Sheldon K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics (Oxford University Press, New York, 2000) second editionGoogle Scholar
  54. 54.
    Stephen Whitaker, Adv. Heat Transf. 13, 119 (1977)Google Scholar
  55. 55.
    J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, 2013)Google Scholar
  56. 56.
    Dan Guo, Guoxin Xie, Jianbin Luo, J. Phys. D 47, 013001 (2014)Google Scholar
  57. 57.
    N.M. Kovalchuk, V.M. Starov, Adv. Colloid Interface Sci. 179-182, 99 (2012)Google Scholar
  58. 58.
    Y. Mao, M.E. Cates, H.N.W. Lekkerkerker, Physica A 222, 10 (1995)Google Scholar
  59. 59.
    Buzzaccaro Stefano, Piazza Roberto, Colombo Jader, Parola Alberto, J. Chem. Phys. 132, 124902 (2010)Google Scholar
  60. 60.
    D. Sen, J. Bahadur, S. Mazumder, S. Bhattacharya, Soft Matter 8, 10036 (2012)Google Scholar
  61. 61.
    Hui Xu, Sonia Melle, Konstantin Golemanov, Gerald Fuller, Langmuir 21, 10016 (2005)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Justice Archer
    • 1
  • Maciej Kolwas
    • 1
    Email author
  • Mariusz Woźniak
    • 1
  • Daniel Jakubczyk
    • 1
  • Krystyna Kolwas
    • 1
  • Gennadiy Derkachov
    • 1
  • Tomasz Wojciechowski
    • 2
  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland
  2. 2.International Research Centre MagTop, Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations