Advertisement

On the common nature of dark matter and dark energy: Galaxy groups

  • V. G. GurzadyanEmail author
Regular Article
  • 8 Downloads
Part of the following topical collections:
  1. Focus Point on Tests of General Relativity and Alternative Gravity Theories

Abstract.

It is shown that the cosmological constant links the roots both of General Relativity and Newtonian gravity via the general function satisfying Newton’s theorem according to which the gravitating sphere acts as a point mass situated in its center. The quantitative evidence for this link is given via the correspondence of the current value of the cosmological constant with the value of the cosmological term in the modified Newtonian gravity to explain the dark matter in the galaxies. This approach reveals: a) the nature of dark matter as gravity’s signature, b) the common nature of dark matter and of cosmological constant (dark energy), c) that the dark matter as a consequence of repulsive gravity increasing with the distance ensures the observed higher mass-to-luminosity M/L ratio while moving from the scales of galaxies to galaxy clusters. The galactic halos via non-force-free interaction due to the repulsive \( \Lambda\)-term of gravity determine the features of galactic disks as is supported by observations. The data of galaxy groups of the Hercules-Bootes region are also shown to support the \( \Lambda\)-gravity nature of the dark matter, i.e., the value of the cosmological constant is derived not from cosmological data. Among the consequences of such modified General Relativity is the natural link to AdS/CFT correspondence.

References

  1. 1.
    R.H. Sanders, The dark matter problem (Cambridge University Press, 2010)Google Scholar
  2. 2.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Bertone, D. Hooper, Rev. Mod. Phys. 90, 045002 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    S. Bahamonde, arXiv:1712.03107Google Scholar
  5. 5.
    A. Einstein, Sitzungsber. K.-Preußi. Akad. Wiss. 142 (1917)Google Scholar
  6. 6.
    I. Newton, The Principia: Mathematical Principles of Natural Philosophy (1687)Google Scholar
  7. 7.
    V.G. Gurzadyan, Observatory 105, 42 (1985)ADSGoogle Scholar
  8. 8.
    S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, 1972)Google Scholar
  9. 9.
    M. Nowakowski, Int. J. Mod. Phys. D 10, 649 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A13 (2016)CrossRefGoogle Scholar
  11. 11.
    A.V. Kravtsov, Astrophys. J. Lett. 764, L31 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    L.D. Landau, E.M. Lifshitz, Mechanics (Pergamon Press, 2000)Google Scholar
  13. 13.
    Y.B. Zeldovich, JETP Lett. 6, 316 (1967)ADSGoogle Scholar
  14. 14.
    S. Capozziello et al., JCAP 06, 044 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    I.D. Karachentsev, O.G. Kashibadze, V.E. Karachentseva, Astrophys. Bull. 72, 111 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    I. Ciufolini et al., Eur. Phys. J. C 76, 120 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    L. Heisenberg, S. Tsujikawa, arXiv:1711.09430Google Scholar
  18. 18.
    V.G. Gurzadyan et al., Astron. Astrophys. 609, A131 (2018)CrossRefGoogle Scholar
  19. 19.
    A.E. Allahverdyan, V.G. Gurzadyan, Phys. Rev. E 93, 052125 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 78, 632 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 78, 869 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Cosmology and AstrophysicsAlikhanian National Laboratory and Yerevan State UniversityYerevanArmenia

Personalised recommendations