Advertisement

Estimating heat release due to a phase change of high-pressure condensing steam using the Buckingham Pi theorem

  • Fahime Salmani
  • Mohammad Reza MahpeykarEmail author
  • Ehsan Amiri Rad
Regular Article
  • 6 Downloads

Abstract.

The flow of steam, at the Wilson point, begins to condensate through nucleation, and its non-equilibrium conditions are suppressed by forming the critical droplets that decrease the Gibbs energy, and then the condensation shock occurs. Droplet radius (r) and Wetness fraction (WF) or the heat release rate due to phase change (\(\dot{Q}\)) are important parameters in the design and operation of high-pressure (HP) wet steam equipment. The experimental, analytical, and numerical methods have been considered as cost-intensive, complicated, and time-consuming, respectively. Therefore, in this study, using only dry vapor data, an innovative method based on the Buckingham Pi theorem is proposed to estimate the droplet radius and WF or \( \dot{Q}\). Also, an acceptable threshold for the identification of the Wilson point location is suggested. First, the results of analytical modeling are in good agreement with the experimental data at the range of 25-35bars. Next, using dimensional analysis, the droplet-wetness parameter (DWP) is obtained as a dimensionless number which is a function of effective parameters. By curve fittings, two regression equations are proposed for calculating r and WF at the end of nozzles. Finally, the results of the proposed equations are compared with those of the available analytical models. There is good agreement between the current method and the available models in the literature. This innovative method, based on dimensional analysis, is introduced for preliminary design of HP nucleating steam equipment.

References

  1. 1.
    A. Asadollahi, S. Rashidi, J.A. Esfahani, R. Ellahi, Eur. Phys. J. Plus 133, 306 (2018)CrossRefGoogle Scholar
  2. 2.
    F. Bakhtar, D.J. Ryley, K.A. Tubman, J.B. Young, Proc. Inst. Mech. Eng. 189, 427 (1975)CrossRefGoogle Scholar
  3. 3.
    R. Puzyrewski, W. Studzinski, Int. J. Multiphase Flow 6, 425 (1980)CrossRefGoogle Scholar
  4. 4.
    H. Ding, C. Wang, Y. Zhao, Int. J. Heat Mass Transfer 73, 586 (2014)CrossRefGoogle Scholar
  5. 5.
    A.M. Binnie, M.W. Woods, Proc. Inst. Mech. Eng. 138, 229 (1938)CrossRefGoogle Scholar
  6. 6.
    A.M. Binnie, J.R. Green, Proc. R. Soc. London A 181, 134 (1942)ADSCrossRefGoogle Scholar
  7. 7.
    M.Y. Deych, A.V. Kurshakov, G.A. Saltanov, I.A. Yatcheni, Heat Transf. Sov. Res. 1, 95 (1969)Google Scholar
  8. 8.
    G.D. Stein, J. Chem. Phys. 51, 938 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    G. Gyarmathy, F. Lesch, Paper 12: Fog Droplet Observations in Laval Nozzles and in an Experimental Turbine, in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 184 (Sage UK, London, 1970) pp. 29--36Google Scholar
  10. 10.
    T. Krol, Trans. Inst. Fluid Flow Machin. 57, 19 (1971)Google Scholar
  11. 11.
    V. Petr, Proc. Inst. Mech. Eng. 184, 22 (1970)Google Scholar
  12. 12.
    D. Barschdorff, W.J. Dunning, P.P. Wegener, B.J. Wu, Nat. Phys. Sci. 240, 166 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Moore, Predicting the fog-drop size in wet-steam turbines (1973)Google Scholar
  14. 14.
    C.A. Moses, G.D. Stein, J. Fluids Eng. 100, 311 (1978)CrossRefGoogle Scholar
  15. 15.
    G. Cinar, B.S. Yilbas, M. Sunar, Int. J. Multiphase Flow 23, 1171 (1997)CrossRefGoogle Scholar
  16. 16.
    S. Dykas, M. Majkut, K. Smołka, M. Strozik, Int. J. Heat Mass Transfer 120, 9 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Hoznedl, M. Kolovratník, L. Tajč, A.P. Weiß, L. Mrózek, Influence of Wet Steam on the Five-Stage Steam Turbine Efficiency, in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition 2018 Jun. 11 (ASME, 2018) pp. V008T29A001--V008T29A001Google Scholar
  18. 18.
    S.V. Khomyakov, R.A. Alexeev, I.Y. Gavrilov, V.G. Gribin, A.A. Tishchenko, V.A. Tishchenko, V.V. Popov, J. Phys.: Conf. Ser. 891, 012256 (2017)Google Scholar
  19. 19.
    D. Walker, S. Barham, D. Giddings, G. Dimitrakis, Rev. Chem. Eng. (2018)  https://doi.org/10.1515/revce-2017-0078
  20. 20.
    S. Dykas, M. Majkut, M. Strozik, K. Smołka, Int. J. Heat Mass Transfer 80, 50 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Bakhtar, J.B. Young, Trans. Inst. Fluid Flow Machin. 70, 259 (1976)Google Scholar
  22. 22.
    F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part A 203, 195 (1989)CrossRefGoogle Scholar
  23. 23.
    M.R. Mahpeykar, E. Lakzian, E. Amirirad, Sci. Iran. 16, 253 (2009)Google Scholar
  24. 24.
    F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part A 204, 233 (1990)CrossRefGoogle Scholar
  25. 25.
    F. Bakhtar, M. Piran, Int. J. Heat Fluid Flow 1, 53 (1979)CrossRefGoogle Scholar
  26. 26.
    F. Bakhtar, Recent advances in steam turbine research, in International Conference on Energy and Environment (ICEE 2006) (2006)Google Scholar
  27. 27.
    A.J. White, J.B. Young, P.T. Walters, Philos. Trans. R. Soc. London A 354, 59 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M.T. Somesaraee, E.A. Rad, M.R. Mahpeykar, J. Therm. Anal. Calorim. 133, 1023 (2018)CrossRefGoogle Scholar
  29. 29.
    M.S. Mirhoseini, M. Boroomand, Meccanica 53, 193 (2018)CrossRefGoogle Scholar
  30. 30.
    M.J. Kermani, A.G. Gerber, Int. J. Heat Mass Transfer 46, 3265 (2003)CrossRefGoogle Scholar
  31. 31.
    S. Yamamoto, S. Moriguchi, H. Miyazawa, T. Furusawa, Int. J. Heat Mass Transfer 119, 720 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Dai, Y. Cheng, J. Zou, D. Hu, Int. J. Heat Mass Transfer 86, 351 (2015)CrossRefGoogle Scholar
  33. 33.
    A.G. Gerber, M.J. Kermani, Int. J. Heat Mass Transfer 47, 2217 (2004)CrossRefGoogle Scholar
  34. 34.
    S.N. Abadi, R. Kouhikamali, K. Atashkari, Appl. Therm. Eng. 81, 74 (2015)CrossRefGoogle Scholar
  35. 35.
    S.N. Abadi, A. Ahmadpour, S.M. Abadi, J.P. Meyer, Appl. Therm. Eng. 112, 1575 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Dykas, W. Wróblewski, Int. J. Heat Mass Transfer 55, 6191 (2012)CrossRefGoogle Scholar
  37. 37.
    S.J. Keisari, M. Shams, Appl. Therm. Eng. 103, 812 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Ding, C. Wang, C. Chen, Appl. Therm. Eng. 71, 324 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Kawamizu, T. Kaneko, S. Suzuki, T. Tsuruta, Int. J. Heat Mass Transfer 52, 805 (2009)CrossRefGoogle Scholar
  40. 40.
    N. Sharifi, M. Boroomand, M. Sharifi, Appl. Therm. Eng. 52, 449 (2013)CrossRefGoogle Scholar
  41. 41.
    F. Bakhtar, R.A. Webb, Int. J. Heat Fluid Flow 4, 217 (1983)CrossRefGoogle Scholar
  42. 42.
    F. Bakhtar, M.R. Mahpeykar, K. Abbas, J. Fluids Eng. 117, 138 (1995)CrossRefGoogle Scholar
  43. 43.
    M.R. Mahpeykar, E. Amirirad, Sci. Iran. Trans. B 17, 337 (2010)Google Scholar
  44. 44.
    M.R. Mahpeykar, A.R. Teymourtash, E. Amiri Rad, Int. J. Exergy 9, 21 (2011)CrossRefGoogle Scholar
  45. 45.
    E.A. Rad, M.R. Mahpeykar, A.R. Teymourtash, Sci. Iran. 20, 141 (2013)CrossRefGoogle Scholar
  46. 46.
    M.R. Mahpeykar, A.R. Teymourtash, E.A. Rad, Meccanica 48, 815 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    M.R. Mahpeykar, A.R. Mohammadi, J. Thermophys. Heat Transf. 27, 286 (2013)CrossRefGoogle Scholar
  48. 48.
    M.R. Mahpeykar, E.A. Rad, A.R. Teymourtash, Sci. Iran. 21, 1700 (2014)Google Scholar
  49. 49.
    M.Z. Qureshi, M. Ashraf, Eur. Phys. J. Plus 133, 71 (2018)CrossRefGoogle Scholar
  50. 50.
    E. Lakzian, A. Masoudifar, H. Saghi, Eur. Phys. J. Plus 132, 125 (2017)CrossRefGoogle Scholar
  51. 51.
    F. Mabood, S. Shateyi, W.A. Khan, Eur. Phys. J. Plus 130, 188 (2015)CrossRefGoogle Scholar
  52. 52.
    M.P. Vukalovich, Thermodynamic properties of water and steam (1958)Google Scholar
  53. 53.
    B.N. Hale, J. Chem. Phys. 122, 204509 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    S. Sinha, B.E. Wyslouzil, G. Wilemski, Aerosol Sci. Technol. 43, 9 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    T. Nemec, Eur. Phys. J. E 37, 111 (2014)CrossRefGoogle Scholar
  56. 56.
    B.E. Wyslouzil, J. Wölk, J. Chem. Phys. 145, 211702 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    F. Bakhtar, J.B. Young, A.J. White, D.A. Simpson, Proc. Inst. Mech. Eng. Part C 219, 1315 (2005)CrossRefGoogle Scholar
  58. 58.
    F. Bakhtar, K. Zidi, Proc. Inst. Mech. Eng. Part C 199, 159 (1985)CrossRefGoogle Scholar
  59. 59.
    E. Buckingham, Phys. Rev. 4, 345 (1914)ADSCrossRefGoogle Scholar
  60. 60.
    R.H. Sabersky, A.J. Acosta, E.G. Hauptmann, Fluid Flow: A First Course in Fluid Mechanics (Macmillan, New York, 1999)Google Scholar
  61. 61.
    A.G. Gerber, J. Fluids Eng. 124, 465 (2002)CrossRefGoogle Scholar
  62. 62.
    S. Senoo, A.J. White, Numerical simulations of unsteady wet steam flows with non-equilibrium condensation in the nozzle and the steam turbine, in ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering 2006 Jan. 1 (ASME, 2006) pp. 757--767Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fahime Salmani
    • 1
  • Mohammad Reza Mahpeykar
    • 2
    Email author
  • Ehsan Amiri Rad
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations