Advertisement

Engineering adjoint hypermultiplet

  • Khurram ShabbirEmail author
  • Umar Shahzad
Regular Article
  • 10 Downloads

Abstract.

We study the topological string partition function of a class of toric Calabi-Yau threefold with compact dual web diagrams. These compact web diagrams are compactification of the web diagrams engineering pure five-dimensional SU(N) gauge theory with zero Chern-Simons term. We show, by calculating the topological string partition function, that the corresponding gauge theory is the SU(N) gauge theory with an adjoint hypermultiplet on \( \mathbb{R}^{4}\times T^2\) . The advantage of this brane web is that the decoupling limit in which the mass of the hypermultiplet goes to infinity can be taken directly without the needs for any flop transitions (in the dual Calabi-Yau threefold). Also it makes manifest the symmetry of the partition function under the exchange of the mass of the adjoint hypermultiplet and one of the other Kähler parameters associated with complex structure of T2.

References

  1. 1.
    S.H. Katz, A. Klemm, C. Vafa, Nucl. Phys. B 497, 173 (1997) hep-th/9609239ADSCrossRefGoogle Scholar
  2. 2.
    K.A. Intriligator, D.R. Morrison, N. Seiberg, Nucl. Phys. B 497, 56 (1997) hep-th/9702198ADSCrossRefGoogle Scholar
  3. 3.
    M. Aganagic, A. Klemm, M. Marino, C. Vafa, Commun. Math. Phys. 254, 425 (2005) hep-th/0305132ADSCrossRefGoogle Scholar
  4. 4.
    A. Iqbal, C. Kozcaz, C. Vafa, JHEP 10, 069 (2009) arXiv:hep-th/0701156ADSCrossRefGoogle Scholar
  5. 5.
    R. Donagi, E. Witten, Nucl. Phys. B 460, 299 (1996) hep-th/9510101ADSCrossRefGoogle Scholar
  6. 6.
    T.J. Hollowood, A. Iqbal, C. Vafa, JHEP 03, 069 (2008) hep-th/0310272ADSCrossRefGoogle Scholar
  7. 7.
    B. Haghighat, A. Iqbal, C. Kozaz, G. Lockhart, C. Vafa, Commun. Math. Phys. 334, 779 (2015) arXiv:1305.6322 [hep-th]ADSCrossRefGoogle Scholar
  8. 8.
    O. Aharony, A. Hanany, B. Kol, JHEP 01, 002 (1998) hep-th/9710116ADSCrossRefGoogle Scholar
  9. 9.
    N.C. Leung, C. Vafa, Adv. Theor. Math. Phys. 2, 91 (1998) hep-th/9711013MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.R. Douglas, S.H. Katz, C. Vafa, Nucl. Phys. B 497, 155 (1997) hep-th/9609071ADSCrossRefGoogle Scholar
  11. 11.
    A. Kanazawa, S.C. Lau, Local Calabi-Yau manifolds of type $\tilde{A}$ via SYZ mirror symmetry, arXiv:1605.00342 [math.AG]Google Scholar
  12. 12.
    S. Hohenegger, A. Iqbal, S.J. Rey, JHEP 07, 112 (2017) arXiv:1610.07916 [hep-th]ADSCrossRefGoogle Scholar
  13. 13.
    A. Iqbal, A.K. Kashani-Poor, Adv. Theor. Math. Phys. 10, 1 (2006) hep-th/0306032MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Iqbal, A.K. Kashani-Poor, Adv. Theor. Math. Phys. 7, 457 (2003) hep-th/0212279MathSciNetCrossRefGoogle Scholar
  15. 15.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials, in Oxford Mathematical Monographs, second edition (Oxford Science Publications, 1995)Google Scholar
  16. 16.
    A. Iqbal, K. Shabbir, in preparationGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsGovernment College UniversityLahorePakistan
  2. 2.Abdus Salam School of Mathematical SciencesGovernment College UniversityLahorePakistan

Personalised recommendations