Advertisement

Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect

  • Yan Qing WangEmail author
  • Yun Fei Liu
  • Jean W. Zu
Regular Article
  • 22 Downloads

Abstract.

This paper investigates the vibration of sandwich functionally graded piezoelectric material (FGPM) circular cylindrical nanoshells subjected to thermo-electro-mechanical loading. Based on the nonlocal elasticity theory and Love’s thin shell theory, the governing equations of the present system are derived by using Hamilton’s principle. Then, Navier’s method is utilized to obtain the analytical solution to the sandwich FGPM nanoshells under simply supported condition. Afterwards, a detailed parametric study is conducted. Results show that the temperature, the external electric potential, the nonlocal parameter, the power-law index, the core thickness, the sandwich type and the radius-to-thickness ratio play important roles on the free vibration of sandwich FGPM cylindrical nanoshells.

References

  1. 1.
    V. Gupta, M. Sharma, N. Thakur, J. Intell. Mater. Syst. Struct. 21, 1227 (2010)CrossRefGoogle Scholar
  2. 2.
    F. Lu, H.P. Lee, S.P. Lim, Smart Mater. Struct. 13, 57 (2003)CrossRefGoogle Scholar
  3. 3.
    D.W. Schindel, D.A. Hutchins, W.A. Grandia, Ultrasonics 34, 621 (1996)CrossRefGoogle Scholar
  4. 4.
    E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Yang, P. Qiao, Smart Mater. Struct. 14, 1083 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Koizumi, Compos. Part B Eng. 28, 1 (1997)CrossRefGoogle Scholar
  7. 7.
    Y.Q. Wang, J.W. Zu, Compos. Struct. 164, 130 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Arefi, A.M. Zenkour, Eur. Phys. J. Plus 132, 423 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.Q. Wang, Acta Astronaut. 143, 263 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Y.Q. Wang, J.W. Zu, Int. J. Struct. Stab. Dyn. 18, 1850031 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Liu, P.-J. Lu, S. Liang, W. Wang, M. Lei, S. Tang, Q. Yang, Nano Energy 12, 709 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Schwingel, H.-W. Seeliger, C. Vecchionacci, D. Alwes, J. Dittrich, Acta Astronaut. 61, 326 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    K.-Y. Park, S.-E. Lee, C.-G. Kim, J.-H. Han, Compos. Sci. Technol. 66, 576 (2006)CrossRefGoogle Scholar
  14. 14.
    A.S. Herrmann, P.C. Zahlen, I. Zuardy, Sandwich Structures Technology in Commercial Aviation, (Springer, 2005)Google Scholar
  15. 15.
    M. Arefi, R. Karroubi, M. Irani-Rahaghi, Appl. Math. Mech. 37, 821 (2016)CrossRefGoogle Scholar
  16. 16.
    C.-P. Wu, T.-C. Tsai, Appl. Math. Model. 36, 1910 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, Steel Compos. Struct. 18, 235 (2015)CrossRefGoogle Scholar
  18. 18.
    T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 75505 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)Google Scholar
  21. 21.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)CrossRefGoogle Scholar
  23. 23.
    L.L. Ke, Y.S. Wang, Smart Mater. Struct. 21, 025018 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    X.-Q. Fang, C.-S. Zhu, J.-X. Liu, X.-L. Liu, Phys. B Condens. Matter 529, 41 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    X. Liang, S. Hu, S. Shen, Smart Mater. Struct. 24, 105012 (2015)CrossRefGoogle Scholar
  26. 26.
    A.A. Jandaghian, O. Rahmani, J. Intell. Mater. Syst. Struct. 28, 3039 (2017)CrossRefGoogle Scholar
  27. 27.
    R. Ansari, M.F. Oskouie, R. Gholami, F. Sadeghi, Compos. Part B Eng. 89, 316 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Compos. Struct. 106, 167 (2013)CrossRefGoogle Scholar
  29. 29.
    K.F. Wang, B.L. Wang, EPL 97, 66005 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Yan, L. Jiang, J. Phys. D 46, 355502 (2013)CrossRefGoogle Scholar
  31. 31.
    L.L. Ke, Y.S. Wang, J.N. Reddy, Compos. Struct. 116, 626 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Sun, Z. Wang, Z. Zhou, X. Xu, C.W. Lim, Appl. Math. Model. 59, 341 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Zhang, J. Zhu, W. Chen, C. Zhang, Eur. J. Mech. 43, 109 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Sahmani, M.M. Aghdam, Microsyst. Technol. 24, 1333 (2018)CrossRefGoogle Scholar
  35. 35.
    C.-S. Zhu, X.-Q. Fang, J.-X. Liu, H.-Y. Li, Eur. J. Mech. 66, 423 (2017)CrossRefGoogle Scholar
  36. 36.
    F. Mehralian, Y.T. Beni, R. Ansari, Compos. Struct. 152, 45 (2016)CrossRefGoogle Scholar
  37. 37.
    L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Smart Mater. Struct. 23, 125036 (2014)CrossRefGoogle Scholar
  38. 38.
    T.P. Vo, H.-T. Thai, T.-K. Nguyen, A. Maheri, J. Lee, Eng. Struct. 64, 12 (2014)CrossRefGoogle Scholar
  39. 39.
    A.M. Zenkour, M. Sobhy, Compos. Struct. 93, 93 (2010)CrossRefGoogle Scholar
  40. 40.
    H. Zeighampour, M. Shojaeian, J. Braz. Soc. Mech. Sci. Eng. 39, 2789 (2017)CrossRefGoogle Scholar
  41. 41.
    W. Soedel, Vibrations of Shells and Plates (CRC Press, 2004)Google Scholar
  42. 42.
    Q. Wang, Eng. Struct. 24, 199 (2002)CrossRefGoogle Scholar
  43. 43.
    D.P. Zhang, Y.J. Lei, Z.B. Shen, Int. J. Mech. Sci. 131--132, 1001 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Zhao, C. Qian, S.W.R. Lee, P. Tong, H. Suemasu, T.Y. Zhang, Adv. Compos. Mater. Off. J. Japan Soc. Compos. Mater. 16, 63 (2007)Google Scholar
  45. 45.
    Y.Q. Wang, X.B. Huang, J. Li, Int. J. Mech. Sci. 110, 201 (2016)CrossRefGoogle Scholar
  46. 46.
    Y.Q.Wang, J.W. Zu, Appl. Math. Mech. 38, 625 (2017)CrossRefGoogle Scholar
  47. 47.
    Y.Q. Wang, J.W. Zu, Int. J. Appl. Mech. 09, 1750005 (2017)CrossRefGoogle Scholar
  48. 48.
    F. Kheibari, Y.T. Beni, Mater. Des. 114, 572 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Yang, Special Topics in the Theory of Piezoelectricity (Springer Science & Business Media, 2010)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MechanicsNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ministry of Education on Safe Mining of Deep Metal MinesNortheastern UniversityShenyangChina
  3. 3.Schaefer School of Engineering and Science, Stevens Institute of TechnologyHobokenUSA

Personalised recommendations