Magnetohydrodynamic instability of mixed convection in a differentially heated vertical channel
- 17 Downloads
Abstract.
The present paper investigates the instability of mixed convection in a differentially heated vertical layer of an electrically conducting fluid under the influence of a uniform horizontal magnetic field. The key parameters which influence the instability characteristics of the system are the Hartman number, the Reynolds number, the Grashof number and the Prandtl number. The computational results reveal that two-dimensional disturbances are more unstable than the three-dimensional disturbances. Further, influence of the Grashof number and the Hartmann number is analyzed on the basic flow. The effect of increasing the Hartman number shows stabilizing effect on the fluid flow and dissimilar is the case with an increase in the Reynolds number and the Prandtl number. In the presence of Reynolds number, Re, stationary instability disappears altogether which is contrary to the results observed in the case of pure natural convection (\( Re\rightarrow 0\)). The numerical results obtained under the limiting cases are shown to be in excellent agreement with the existing ones.
References
- 1.Y.C. Chen, J.N. Chung, J. Fluid Mech. 325, 29 (1996)ADSCrossRefGoogle Scholar
- 2.Y.C. Chen, J.N. Chung, C.S. Wu, Y.F. Lue, Int. J. Heat Mass Transfer 43, 2421 (2000)CrossRefGoogle Scholar
- 3.Y.C. Chen, Int. J. Heat Mass Transfer 47, 1257 (2004)CrossRefGoogle Scholar
- 4.Jai Kumar, P. Bera, A. Khalili, Int. J. Heat Mass Transfer 53, 5261 (2010)CrossRefGoogle Scholar
- 5.C.D. Dritselis, A.J. Iatridis, I.E. Sarris, N.S. Vlachos, Int. J. Therm. Sci. 65, 28 (2013)CrossRefGoogle Scholar
- 6.Y.C. Chen, J.N. Chung, ASME J. Heat Transf. 120, 127 (1998)CrossRefGoogle Scholar
- 7.R.C. Lock, Proc. R. Soc. A 233, 105 (1955)ADSGoogle Scholar
- 8.M.C. Potter, J.A. Kutchey, Phys. Fluids 16, 1848 (1973)ADSCrossRefGoogle Scholar
- 9.M. Takashima, Fluid Dyn. Res. 17, 293 (1996)ADSMathSciNetCrossRefGoogle Scholar
- 10.O.D. Makinde, Math. Comp. Model. 37, 251 (2003)MathSciNetCrossRefGoogle Scholar
- 11.O.D. Makinde, P.Y. Mhone, Comp. Math. Appl. 53, 128 (2007)CrossRefGoogle Scholar
- 12.A. Proskurin, A. Sagalakov, J. Appl. Mech. Tech. Phys. 49, 383 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 13.O.D. Makinde, P.Y. Mhone, Flow Turb. Combust. 83, 21 (2009)CrossRefGoogle Scholar
- 14.J. Hagan, J. Priede, J. Fluid Mech. 760, 387 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 15.B.M. Shankar, I.S. Shivakumara, Appl. Math. Comput. 321, 752 (2018)MathSciNetGoogle Scholar
- 16.O. Zikanov, A. Thess, J. Fluid Mech. 358, 299 (1998)ADSCrossRefGoogle Scholar
- 17.M. Takashima, Fluid Dyn. Res. 14, 121 (1994)ADSCrossRefGoogle Scholar
- 18.B.M. Shankar, Jai Kumar, I.S. Shivakumara, J. Magn. & Magn. Mater. 421, 152 (2017)ADSCrossRefGoogle Scholar
- 19.M. Nagata, Eur. J. Mech.-B/Fluids 17, 33 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 20.O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 49, 1813 (2010)CrossRefGoogle Scholar
- 21.S. Satake, K. Sone, K. Furumi, T. Kunugi, Fusion Eng. Design 87, 798 (2012)CrossRefGoogle Scholar
- 22.J.H. Son, I.S. Park, Numer. Heat Transf. Part A 71, 1004 (2017)ADSCrossRefGoogle Scholar
- 23.M. Sankar, M. Venkatachalappa, I.S. Shivakumara, Int. J. Eng. Sci. 44, 1556 (2006)CrossRefGoogle Scholar
- 24.D.S. Krasnov, E. Zienicke, O. Zinkanov, T. Boeck, A. Thess, J. Fluid Mech. 504, 183 (2004)ADSMathSciNetCrossRefGoogle Scholar
- 25.B.M. Shankar, Jai Kumar, I.S. Shivakumara, Appl. Math. Model. 40, 5462 (2016)MathSciNetCrossRefGoogle Scholar
- 26.B.M. Shankar, I.S. Shivakumara, Transp. Porous Med. 124, 395 (2018)CrossRefGoogle Scholar
- 27.B.A. Singer, J.H. Ferziger, H.L. Read, J. Fluid Mech. 208, 45 (1989)ADSCrossRefGoogle Scholar
- 28.B.M. Shankar, Jai Kumar, I.S. Shivakumara, Int. J. Heat Mass Transfer 78, 447 (2014)CrossRefGoogle Scholar