Advertisement

Nonlinear dust magnetosonic waves in collisional plasma

  • S. HussainEmail author
  • H. Rizvi
Regular Article
  • 11 Downloads

Abstract.

The excitations and damping of nonlinear dust magnetosonic waves in dissipative plasma are investigated. The dynamics of negatively charged dust particles is considered. The dissipation is taken due to dust neutral collisions. The ions and electrons are inertialess on dust dynamic scale. The temperature of ions and electrons is also taken into account. The linear dispersion charteristics of dust magnetosonic waves are discussed for different values of plasma parameters. For this purpose we have derived Damped Korteweg de Vries (DKdV) equation by applying the reductive perturbation method. For weak dissipation the analytical solution of DKdV is presented. For the numerical solution, we apply a two-level finite difference scheme with the help of the Runge-Kutta method. The effects of variations of different plasma parameters on the damping of nonlinear dust magnetosonic solitary wave structures are discussed.

References

  1. 1.
    V.V. Yaroshenko, F. Verheest, G. Morfill, Astron. Astrophys. 461, 385 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    B.P. Panday, J. Vranjes, Phys. Plasmas 15, 083701 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)Google Scholar
  4. 4.
    P.K. Shukla, L. Stenflo, Astrophys. Space Sci. 190, 23 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Duha, B. Shikia, A.A. Mamun, Pramana J. Phys. 77, 357 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    B.P. Pandey, S.V. Vladimirov, A. Samarian, Phys. Plasmas 25, 053705 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    F. Haas, P.K. Shukla, Phys. Plasmas 15, 093702 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S. Hussain, S. Mahmood, Phys. Plasmas 18, 123701 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    N. Kaur, M. Singh, N.S. Siani, Phys. Plasmas 25, 043704 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Vladimirov, M.Y. Yu, Phys. Rev. E 48, 2136 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ghosh, EPL 99, 36002 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hussain, H. Hasnain, Phys. Plasmas 24, 032106 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sultana, I. Kourakis, Phys. Plasmas 22, 102302 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H. Washimi, T. Tanuiti, Phys. Rev. Lett. 17, 996 (1966)ADSCrossRefGoogle Scholar
  16. 16.
    P.K. Shukla, H.U. Rahman, Phys. Plasmas 3, 1 (1996)Google Scholar
  17. 17.
    A. Barken, R.L. Merlino, N. D’Angelo, Phys. Plasmas 2, 10 (1995)Google Scholar
  18. 18.
    E. Cumberbatch, Phys. Fluids 21, 374 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    S. Sultana, Phys. Lett. A 382, 1368 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I.S. Elkamash, I. Kourakis, in Proceedings of the 43rd EPS Conference on Plasma Physics - Leuven, Belgium (EPS, 2016) p. 977Google Scholar
  21. 21.
    S. Hussain, Mahnaz Q. Haseeb, H. Hasnain, Phys. Plasmas 24, 102126 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    P.K. Shukla, I. Kourakis, L. Stenflo, Phys. Plasmas 12, 024501 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Mamun, P.K. Shukla, R. Bingham, JETP Lett. 77, 541 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    T.A. Ellis, J.S. Neff, Icarus 91, 281 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical Physics Division (TPD)PINSTECHIslamabadPakistan

Personalised recommendations