Advertisement

Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering

  • S. SahmaniEmail author
  • M. Shahali
  • M. Ghadiri Nejad
  • A. Khandan
  • M. M. Aghdam
  • S. Saber-Samandari
Regular Article
  • 29 Downloads

Abstract.

In the current study, bio-nanocomposites scaffolds including natural hydroxyapatite (n-HA) composed with different weight fractions of copper oxide nanoparticles (CuO-NPs) are fabricated using the space holder technique. After that, the manufactured samples are coated with gelatin polymer loaded with ibuprofen drug. Via experimental methods, the mechanical properties (fracture toughness and compressive strength) of n-HA-CuO bio-nanocomposite scaffolds are achieved corresponding to various weight fractions of the CuO-NPs. Also, the electrical conductivity and cell viability of the fabricated scaffolds are evaluated using the scan electron microscope (SEM) and X-ray diffraction (XRD) technique. Thereafter, based upon the extracted mechanical properties, nonlinear mechanical behaviors of beam-type implants made of the prepared n-HA-CuO bio-nanocomposites are predicted analytically. The cell viability and electrical conductivity evaluation demonstrate that on the free surface of all bio-nanocomposite scaffolds, there is a thin layer of apatite carbonate; however, the thickness of this layer in the sample containing 5wt% CuO-NPs is lower than other ones. It is seen that the adherence of ibuprofen's penetration into the gelatin polymer is weak which leads to two explosive release stages. For the lower weight fraction of CuO-NPs, the release of ibuprofen becomes significant.

References

  1. 1.
    D. Ye, W. Tang, Z. Xu, X. Zhao, G. Wang, Mater. Lett. 223, 105 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Sahmani, S. Saber-Samandari, M. Shahali, H.J. Yekta, F. Aghadavoudi, A.H. Montazeran, M.M. Aghdam, A. Khandan, J. Mech. Behav. Biomed. Mater. 88, 238 (2018)CrossRefGoogle Scholar
  3. 3.
    V. Stanić, S. Dimitrijević, J. Antić-Stanković, M. Mitrić, B. Jokić, I.B. Plećaš, S. Raičević, Appl. Surf. Sci. 256, 6083 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Jemal, H. Tounsi, S. Djemel, C. Pettito, G. Delahay, React. Kinet. Mech. Catal. 109, 159 (2013)CrossRefGoogle Scholar
  5. 5.
    R.I. Salganik, J. Am. Coll. Nutr. 20, 464S (2001)CrossRefGoogle Scholar
  6. 6.
    M. Abdellahi, E. Karamian, A. Najafinezhad, F. Ranjabar, A. Chami, A. Khandan, J. Mech. Behav. Biomed. Mater. 77, 534 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Sahmani, A. Khandan, S. Saber-Samandari, M.M. Aghdam, Ceram. Int. 44, 11282 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Sahmani, A. Khandan, S. Saber-Samandari, M.M. Aghdam, Ceram. Int. 44, 9540 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Zhao, W. Liang, Mater. Lett. 194, 220 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Othmani, H. Bachoua, Y. Ghandour, A. Aissa, M. Debbabi, Mater. Res. Bull. 97, 560 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Najafinezhad, M. Abdellahi, S. Saber-Samandari, H. Ghayour, A. Khandan, J. Alloys Compd. 734, 290 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Salerno, R. Hermann, J. Bone Joint Surg. 88, 1361 (2006)CrossRefGoogle Scholar
  13. 13.
    R.A. Urdaneta, S. Daher, J. Lery, K. Emanuel, S.K. Chuang, Int. J. Oral Maxillofac. Implants 26, 1063 (2011)Google Scholar
  14. 14.
    C. Wen, Y. Cui, X. Chen, B. Zong, W.L. Dai, Appl. Catal. B: Environ. 162, 483 (2015)CrossRefGoogle Scholar
  15. 15.
    M.W. Whitehouse, Curr. Med. Chem. 12, 2931 (2005)CrossRefGoogle Scholar
  16. 16.
    E. Terzi, S.N. Kartal, P. Gerardin, C.M. Ibanez, T. Yoshimura, J. For. Res. 28, 195 (2017)CrossRefGoogle Scholar
  17. 17.
    M.A. Salami, F. Kaveian, M. Rafienia, S. Saber-Samandari, A. Khandan, M. Naeimi, J. Med. Signals Sens. 7, 228 (2017)Google Scholar
  18. 18.
    M. Ghadirinejad, E. Atasoylu, G. Izbirak, M. Gha-semi, Iran. J. Public Health 45, 1170 (2016)Google Scholar
  19. 19.
    S. Sahmani, M. Shahali, A. Khandan, S. Saber-Samandari, M.M. Aghdam, Appl. Clay Sci. 165, 112 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Abdellahi, A. Najfinezhad, S. Saber-Samanadari, A. Khandan, H. Ghayour, Chin. J. Phys. 56, 331 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Sahmani, S. Saber-Samandari, A. Khandan, M.M. Aghdam, J. Alloys Compd. 773, 636 (2019)CrossRefGoogle Scholar
  22. 22.
    H.A. Heydary, E. Karamian, E. Poorazizi, A. Khandan, J. Heydaripour, Proc. Mater. Sci. 11, 176 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Khandan, N. Ozada, S. Saber-Samandari, M.G. Nejad, Ceram. Int. 44, 3141 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Khandan, H. Jazayeri, M.D. Fahmy, M. Razavi, Biomater. Tissue Eng. 4, 143 (2017)Google Scholar
  25. 25.
    S. Sahmani, S. Saber-Samandari, M.M. Aghdam, A. Khandan, J. Mater. Eng. Perform. (2018)  https://doi.org/10.1007/s11665-018-3619-9
  26. 26.
    H. Joneidi Yekta, M. Shahali, S. Khorshidi, S. Rezaei, A.H. Montazeran, S. Saber-Samandari, D. Ogbemudia, A. Khandan, Nanomed. J. 5, 227 (2018)Google Scholar
  27. 27.
    A.H. Montazeran, S. Saber Samandari, A. Khandan, Nanomed. J. 5, 163 (2018)Google Scholar
  28. 28.
    M. Abdellahi, A. Najafinezhad, H. Ghayour, S. Saber-Samandari, A. Khandan, J. Mech. Behav. Biomed. Mater. 72, 171 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Shahini, M. Yazdimamaghani, K.J. Walker, M.A. Eastman, H. Hatami-Marbini, B.J. Smith, J.L. Ricci, S. Madihally, D. Vashaee, L. Tayebi, Int. J. Nanomed. 9, 167 (2014)Google Scholar
  30. 30.
    A. Khandan, N. Ozada, J. Alloys Compd. 726, 729 (2017)CrossRefGoogle Scholar
  31. 31.
    M.T. Dehaghani, M. Ahmadian, B.H. Beni, Mater. Des. 88, 406 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Dabrowski, W. Swieszkowski, D. Godlinski, K.J. Kurzydlowski, J. Biomed. Mater. Res. Part B: Appl. Biomater. 95, 53 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Sadeghzade, R. Emadi, F. Tavangarian, M. Naderi, Mater. Sci. Eng. C 71, 431 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Ramezani, R. Emadi, M. Kharaziha, F. Tavangarian, Mater. Chem. Phys. 186, 415 (2017)CrossRefGoogle Scholar
  35. 35.
    J.P. Valdes, A.V. Rodriguez, J.G. Carrio, J. Mater. Res. 10, 2174 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    S. Sahmani, A.M. Fattahi, Acta Mech. 228, 3789 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.M. Fattahi, S. Sahmani, Microsyst. Technol. 23, 5121 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Sahmani, M.M. Aghdam, Phys. Lett. A 381, 3818 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Sahmani, A.M. Fattahi, Mater. Res. Express 4, 065001 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    H.-S. Shen, Y. Xiang, L. Feng, Comput. Methods Appl. Mech. Eng. 319, 175 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    S. Sahmani, M.M. Aghdam, J. Biomech. 65, 49 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Sahmani, A.M. Fattahi, Eur. Phys. J. Plus 132, 231 (2017)CrossRefGoogle Scholar
  43. 43.
    A.M. Fattahi, S. Sahmani, Arab. J. Sci. Eng. 42, 4617 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Sahmani, M.M. Aghdam, Int. J. Mech. Sci. 131, 95 (2017)CrossRefGoogle Scholar
  45. 45.
    Y. Yu, H.-S. Shen, H. Wang, D. Hui, Compos. Part B: Eng. 135, 72 (2018)CrossRefGoogle Scholar
  46. 46.
    S. Sahmani, A.M. Fattahi, Appl. Math. Mech. 39, 561 (2018)CrossRefGoogle Scholar
  47. 47.
    S. Sahmani, M.M. Aghdam, Results Phys. 8, 879 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    H.-S. Shen, Eng. Struct. 122, 174 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Sahmani, A.M. Fattahi, Microsyst. Technol. 24, 1265 (2018)CrossRefGoogle Scholar
  50. 50.
    S. Sahmani, M.M. Aghdam, Int. J. Nanosci. Nanotechnol. 14, 207 (2018)Google Scholar
  51. 51.
    Y. Fan, Y. Xiang, H.-S. Shen, D. Hui, Compos. Part B: Eng. 144, 184 (2018)CrossRefGoogle Scholar
  52. 52.
    S. Sahmani, M.M. Aghdam, Nonlinear size-dependent instability of hybrid FGM nanoshells, in Nonlinear Approaches in Engineering Applications (Springer, 2018) pp. 107--143Google Scholar
  53. 53.
    S. Sahmani, M.M. Aghdam, T. Rabczuk, Compos. Struct. 198, 51 (2018)CrossRefGoogle Scholar
  54. 54.
    Z.-X. Wang, H.-S. Shen, Compos. Struct. 192, 642 (2018)CrossRefGoogle Scholar
  55. 55.
    S. Sahmani, M.M. Aghdam, Compos. Part B: Eng. 114, 404 (2018)CrossRefGoogle Scholar
  56. 56.
    S. Sahmani, A. Khandan, Microsyst. Technol. (2018)  https://doi.org/10.1007/s00542-018-4072-2
  57. 57.
    S. Sahmani, M.M. Aghdam, T. Rabczuk, Compos. Struct. 186, 68 (2018)CrossRefGoogle Scholar
  58. 58.
    H.-S. Shen, Y. Xiang, Thin-Walled Struct. 124, 151 (2018)CrossRefGoogle Scholar
  59. 59.
    S. Sahmani, M.M. Aghdam, Iran. J. Sci. Technol.: Trans. Mech. Eng. 42, 229 (2018)Google Scholar
  60. 60.
    S. Sahmani, M.M. Aghdam, Math. Biosci. 295, 24 (2018)MathSciNetCrossRefGoogle Scholar
  61. 61.
    H.-S. Shen, Y. Xiang, Comput. Methods Appl. Mech. Eng. 330, 64 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    S. Sahmani, M.M. Aghdam, T. Rabczuk, Mater. Res. Express 5, 045048 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Sahmani
    • 1
    Email author
  • M. Shahali
    • 2
  • M. Ghadiri Nejad
    • 3
  • A. Khandan
    • 4
  • M. M. Aghdam
    • 5
  • S. Saber-Samandari
    • 4
  1. 1.Mechanical Rotating Equipment DepartmentNiroo Research Institute (NRI)TehranIran
  2. 2.Quality Control Department, Research and Production ComplexPasteur Institute of IranTehranIran
  3. 3.Industrial Engineering DepartmentGirne American UniversityKyreniaTurkey
  4. 4.New Technologies Research CenterAmirkabir University of TechnologyTehranIran
  5. 5.Mechanical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations