Advertisement

A novel control method to counteract the dynamical degradation of a digital chaotic sequence

  • Chen Chen
  • Kehui SunEmail author
  • Yuexi Peng
  • Abdulaziz O. A. Alamodi
Regular Article
  • 14 Downloads

Abstract.

Due to the finite computing precision, all orbits of a digital chaotic system fall into a cycle when this system is realized on digital computers and digital signal processors. To counteract this degradation, a dynamical perturbation-feedback mixed control (DPFMC) method is proposed by using a novel pseudorandom sequence. We choose a ciphertext sequence as the pseudorandom sequence, and it is used to perturb the digital chaotic system, while it also acts as the coefficient of the dynamical feedback control scheme. The simulation and analysis results show that the proposed method has better dynamical characteristics than traditional methods. Furthermore, we construct a new pseudorandom number generator (PRNG) and determine that it has good randomness. Thus the proposed method can be applied to cryptography and other potential applications.

References

  1. 1.
    M. Sciamanna, K.A. Shore, Nat. Photon. 9, 151 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Marusich, J.L. Wiley, T.W. Lefever, P.R. Patel, B.F. Thomas, Neuropharmacology 134, 73 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Molaie, S. Jafari, M.H. Moradi, J.C. Sprott, Biomed. Signal Process. 10, 245 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Kim, Y. Kim, J. Lee, H.S. Kim, Adv. Meteorol. 2015, 1 (2015)Google Scholar
  5. 5.
    A. Akgul, H. Calgan, I. Koyuncu, I. Pehlivan, A. Istanbullu, Nonlinear Dyn. 84, 481 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.T. Pham, Commun. Nonlinear Sci. 44, 449 (2017)CrossRefGoogle Scholar
  7. 7.
    Z. Lin, S. Yu, J. Lü, S. Cai, G. Chen, IEEE Trans. Circ. Syst. Video Technol. 25, 1203 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Lin, S. Yu, C. Li, J. Lü, Q. Wang, Int. J. Bifurcat. Chaos 26, 1650158 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Ghasemzadeh, E. Esmaeili, Int. J. Speech Technol. 20, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Antonelli, L. Micco, H. Larrondo, O. Rosso, Entropy 20, 135 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    C. Becka, G. Roepstorffa, Physica D 25, 173 (1987)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S.J. Li, G.R. Chen, X.Q. Mou, Int. J. Bifurcat. Chaos 15, 3119 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Lin, L.O. Chua, IEEE Trans. Circ. 38, 557 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    D.D. Wheeler, R.A.J. Matthews, Cryptologia 15, 140 (1991)CrossRefGoogle Scholar
  15. 15.
    G. Heidari-Bateni, C.D. Mcgillem, IEEE Trans. Commun. 42, 1524 (1994)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, Z. Hua, C. Pun, C. Chen, IEEE Trans. Cybern. 45, 2001 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Li, X. Mou, Y. Cai, Phys. Lett. A 290, 127 (2001)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L. Liu, J. Lin, S. Miao, B. Liu, Int. J. Bifurcat. Chaos 27, 1750103 (2017)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, S. Yu, C. Li, J. Lü, X. Fang, C. Guyeux, IEEE Trans. Circ.-I 63, 401 (2016)Google Scholar
  20. 20.
    D. Li, Z. Wang, X. Gu, Q. Guo, High Technol. Lett. 19, 346 (2013)Google Scholar
  21. 21.
    X. Wang, D. Xu, Nonlinear Dyn. 75, 345 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, Y. Luo, S. Song, L.Cao, J. Liu, J. Harkin, Int. J. Bifurcat. Chaos 27, 1750033 (2017)CrossRefGoogle Scholar
  23. 23.
    X.J. Tong, Commun. Nonlinear Sci. 18, 1725 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Nagaraj, M.C. Shastry, P.G. Vaidya, Eur. Phys. J. ST 165, 73 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Xiao, X. Liao, Y. Deng, Chaos, Solitons Fractals 64, 65 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Wu, Y. Zhou, L. Bao, IEEE Trans. Circ. Syst. I Regul. Pap. 61, 3469 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    H. Hu, Y. Xu, Z. Zhu, Chaos, Solitons Fractals 38, 439 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    L. Liu, S. Miao, Phys. Scr. 90, 085205 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    L. Liu, S. Miao, Inform. Sciences 396, 1 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Hu, Y. Deng, L. Liu, Commun. Nonlinear Sci. 19, 1970 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Liu, H. Hu, Y. Deng, Ima J. Math. Control I 32, 703 (2015)Google Scholar
  32. 32.
    J. Zheng, H. Hu, X. Xia, Nonlinear Dyn. 94, 1535 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Liu, B. Liu, H. Hu, S. Miao, Int. J. Bifurcat. Chaos 28, 1850059 (2018)CrossRefGoogle Scholar
  34. 34.
    Y. Deng, H. Hu, L. Liu, Int. J. Mod. Phys. C 26, 1550022 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Deng, H. Hu, W. Xiong, N. Xiong, L. Liu, IEEE Trans. Syst. Man. Cy-S. 45, 1187 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    W. Liu, K. Sun, C. Zhu, Opt. Laser Eng. 84, 26 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    S. Pincus, Chaos 5, 110 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    S. He, K. Sun, H. Wang, Physica A 461, 812 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Chang, Acta Phys. Sin. 62, 709 (2013)Google Scholar
  40. 40.
    K. Sun, S. He, L. Yin, L. Duo, Acta Phys. Sin. 61, 130507 (2012)Google Scholar
  41. 41.
    C. Cao, K. Sun, W. Liu, Signal Process. 143, 122 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chen Chen
    • 1
  • Kehui Sun
    • 1
    Email author
  • Yuexi Peng
    • 1
  • Abdulaziz O. A. Alamodi
    • 1
  1. 1.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations