Advertisement

Electroless deposited silver dendrites for SERS identification of natural dyes on laboratory-dyed and historic textiles

  • F. Poggialini
  • B. CampanellaEmail author
  • T. Cavaleri
  • S. Legnaioli
  • G. Lorenzetti
  • L. Nodari
  • S. Pagnotta
  • P. Tomasin
  • V. Palleschi
Regular Article
  • 38 Downloads
Part of the following topical collections:
  1. Focus Point on Past and Present: Recent Advances in the Investigation of Ancient Materials by Means of Scientific Instrumental Techniques

Abstract.

Nanostructured silver having dendritic morphology is known to provide meaningful Raman signal enhancements. Herein, commercial silicon wafers were easily functionalized with silver dendrites by Galvanic electroless displacement. The superficial oxide layer was removed by treating the wafers with diluted HF to expose the pure silicon, which reacted with silver nitrate to form metallic silver. The morphology of the deposited silver nanostructures was assessed by SEM measurements. Afterwards, the potentialities of the fabricated substrates were tested in the analysis of several natural organic dyes used in antiquity, especially in textile dyeing, by surface-enhanced Raman scattering (SERS) spectroscopy. For the analysis, laboratory-dyed textiles were micro-extracted with a mild aqueous treatment, and the liquid fraction adsorbed and pre-concentrated on pure or functionalized silicon. The method was also applied to the analysis of dyes in archaeological Coptic textiles (30 B.C.-640 A.D.) of Egyptian origin. Together with the identification of the organic dye, the assessment of the inorganic mordant was obtained by surfaced-enhanced laser-induced breakdown spectroscopy (SENLIBS).

Supplementary material

13360_2018_12466_MOESM1_ESM.pdf (581 kb)
Supplementary material

References

  1. 1.
    J.H.H. de Graaff, The Colourful Past: Origins (Abegg-Stiftung and Archetype Publications Ltd., London, 2004)Google Scholar
  2. 2.
    D. Cardon, Natural Dyes: Sources, Tradition, Technology and Science (Archetype, 2007)Google Scholar
  3. 3.
    I. Degano, E. Ribechini, F. Modugno, M.P. Colombini, Appl. Spectrosc. Rev. 44, 363 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wouters, Stud. Conserv. 30, 119 (1985)Google Scholar
  5. 5.
    G.W. Taylor, Stud. Conserv. 28, 153 (1983)Google Scholar
  6. 6.
    G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, L. Dei, Appl. Spectrosc. Rev. 40, 187 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    F. Pozzi, M. Leona, J. Raman Spectrosc. 47, 67 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Betz, W.Y. Wei, Y. Cheng, I.M. White, G.W. Rubloff, Phys. Chem. Chem. Phys. 16, 2224 (2014)CrossRefGoogle Scholar
  9. 9.
    X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, Z.-Q. Tian, Anal. Bioanal. Chem. 394, 1729 (2009)CrossRefGoogle Scholar
  10. 10.
    Z. Huang, X. Jiang, D. Guo, N. Gu, J. Nanosci. Nanotechnol. 11, 9395 (2011)CrossRefGoogle Scholar
  11. 11.
    B. Huang, J. Wang, S. Huo, W. Cai, Surf. Interface. Anal. 40, 81 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Jing, Y. Fang, J. Colloid Interface Sci. 314, 46 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    X. Sun, L. Lin, Z. Li, Z. Zhang, J. Feng, Appl. Surf. Sci. 256, 916 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S. Xie, X. Zhang, D. Xiao, M.C. Paau, J. Huang, M.M.F. Choi, J. Phys. Chem. C 115, 9943 (2011)CrossRefGoogle Scholar
  15. 15.
    W. Ye, Y. Chen, F. Zhou, C. Wang, Y. Li, J. Mater. Chem. 22, 18327 (2012)CrossRefGoogle Scholar
  16. 16.
    W. Ye, C. Shen, J. Tian, C. Wang, L. Bao, H. Gao, Electrochem. Commun. 10, 625 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Gutés, C. Carraro, R. Maboudian, J. Am. Chem. Soc. 132, 1476 (2010)CrossRefGoogle Scholar
  18. 18.
    H.-X. Gu, L. Xue, Y.-F. Zhang, D.-W. Li, Y.-T. Long, ACS Appl. Mater. Interfaces 7, 2931 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Fu, D. Zhu, A. Yu, Spectrochim. Acta Part A Mol. Biomol. Spectrosci. 149, 396 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Fu, W. Ye, C. Wang, Mater. Chem. Phys. 141, 107 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Chen, Q. Jing, J. Chen, B. Wang, J. Huang, Y. Liu, Mater. Charact. 85, 48 (2013)CrossRefGoogle Scholar
  22. 22.
    P.R. Brejna, P.R. Griffiths, Appl. Spectrosc. 64, 493 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    I. Degano, M. Biesaga, M.P. Colombini, M. Trojanowicz, J. Chromatogr. A 1218, 5837 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Sanyova, Microchim. Acta 162, 361 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, Anal. Bioanal. Chem. 385, 240 (2006)CrossRefGoogle Scholar
  26. 26.
    B. Campanella, I. Degano, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini, V. Palleschi, Microchem. J. 139, 230 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Poggialini
    • 1
    • 5
  • B. Campanella
    • 1
    Email author
  • T. Cavaleri
    • 4
  • S. Legnaioli
    • 1
    • 2
  • G. Lorenzetti
    • 1
  • L. Nodari
    • 3
    • 2
  • S. Pagnotta
    • 1
  • P. Tomasin
    • 3
    • 2
  • V. Palleschi
    • 1
    • 2
  1. 1.Istituto di Chimica dei Composti OrganometalliciConsiglio Nazionale delle RicerchePisaItaly
  2. 2.Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)FirenzeItaly
  3. 3.Istituto di Chimica della Materia Condensata e di Tecnologie per l’EnergiaConsiglio Nazionale delle RicerchePadovaItaly
  4. 4.Centro Conservazione e Restauro La Venaria RealeVenaria RealeItaly
  5. 5.Scuola Normale Superiore di PisaPisaItaly

Personalised recommendations