Advertisement

All-optical notch filters for ultra-wideband chaotic communications

  • Mahdi Bahadoran
  • Preecha Yupapin
Regular Article
  • 6 Downloads

Abstract.

In this paper, a wideband all-optical notch filter is proposed using two cascaded modified add-drop resonators from chalcogenide glass (ChG) and GaAsInP-InP waveguide materials. The system consists of ChG main ring and two small side rings called phase modulators made of the GaAsInP-InP materials. The plane waves are fed at the input and add ports, from which the chaotic signal outputs can be generated by the nonlinear effect induced into the center ring. The results have been simulated based on the scattering matrix method. Results have shown that the generated chaotic signals can be used for switching and secured communications. An ultra-fast switching time of ∼ 2 attoseconds is achieved. Moreover, the chaotic signals can be filtered by the stop band filters (notch filters). The free spectral range (FSR) of two cascaded ChGs is 1494.8nm. The output wavelength of the notch filters is tunable from 748.0-2242.2nm and 2242.8-3737.0nm. The band-stop of the notch filter is 1494.2nm. This approach will allow the implementation of the compact, and integrated notch filters in an on-chip scale circuit, which is useful for both light fidelity (LiFi) and wireless fidelity (WiFi) applications.

References

  1. 1.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photon. 5, 141 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang et al., Nat. Photon. 11, 798 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson et al., Nat. Photon. 8, 643 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    M. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies et al., IEEE Photon. Technol. Lett. 22, 3 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    T. Hiratani, D. Inoue, T. Tomiyasu, K. Fukuda, N. Nakamura, T. Amemiya et al., IEEE Photon. Technol. Lett. 29, 1832 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma et al., Opt. Express 21, 29927 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    K. Ogusu, Y. Oda, Opt. Express 19, 649 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M. Asobe, K.i. Suzuki, T. Kanamori, K.i. Kubodera, Appl. Phys. Lett. 60, 1153 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang et al., Opt. Mater. Express 3, 1075 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yu, X. Gai, P. Ma, D.Y. Choi, Z. Yang, R. Wang et al., Laser Photon. Rev. 8, 792 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    A.-B. Mohamed, M.S. Abdalla, A.-S. Obada, Eur. Phys. J. Plus 133, 190 (2018)CrossRefGoogle Scholar
  13. 13.
    W. Wang, S.T. Chu, B.E. Little, A. Pasquazi, Y. Wang, L. Wang et al., Sci. Rep. 6, 28501 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K. Suzuki, Y. Hamachi, T. Baba, Opt. Express 17, 22393 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.K. Poon, J. Scheuer, S. Mookherjea, G.T. Paloczi, Y. Huang, A. Yariv, Opt. Express 12, 90 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Bahadoran, A. Afroozeh, J. Ali, P.P. Yupapin, Opt. Engin. 51, 044601 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Bahadoran, A.F.A. Noorden, F.S. Mohajer, M.H. Abd Mubin, K. Chaudhary, M.A. Jalil et al., Artif. Cells, Nanomed., Biotechnol. 44, 315 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Sirawattananon, M. Bahadoran, J. Ali, S. Mitatha, P.P. Yupapin, IEEE Trans. Nanotechnol. 11, 707 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bahadoran, J. Ali, P.P. Yupapin, Appl. Opt. 52, 2866 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M. Bahadoran, A.F.A. Noorden, K. Chaudhary, F.S. Mohajer, M.S. Aziz, S. Hashim et al., Sensors 14, 12885 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Bahadoran, A.F.A. Noorden, K. Chaudhary, M.S. Aziz, J. Ali, P. Yupapin, Measurement 58, 215 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Bahadoran, P. Yupapin, J. Theor. Appl. Phys. 12, 127 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M. Bahadoran, J. Ali, P.P. Yupapin, IEEE Photon. Technol. Lett. 25, 1470 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Aziz, S. Daud, M. Bahadoran, J. Ali, P.P. Yupapin, J. Nonlinear Opt. Phys. Mater. 21, 1250047 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Vyas, T. Tanabe, M. Tiwari, G. Singh, Chin. Opt. Lett. 14, 123201 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M. Karim, B. Rahman, G.P. Agrawal, Opt. Express 23, 6903 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, P.P. Yupapin, J. Lightwave Technol. 28, 2804 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShiraz University of TechnologyShiraz, FarsIran
  2. 2.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations