Advertisement

Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method

  • Yousef Kazemian
  • Javad Abolfazli EsfahaniEmail author
  • Saman Rashidi
Regular Article
  • 79 Downloads

Abstract.

In this paper, the lattice Boltzmann method (LBM) is modified using a flow rate control code to enhance the convergence speed and decrease the solution time. The mass flow rate is checked at each cross section for the modified lattice Boltzmann method, while for the regular lattice Boltzmann method, the mass flow rate only is checked at the outlet section of the channel. The results obtained by the modified lattice Boltzmann method are compared with the regular lattice Boltzmann one and finite volume methods for different types of channel flow including simple channel, blocked channel with one and two obstacles, channel with two branching outlets, and curved channel with 90-degree bend. The effects of Reynolds number, under relaxation factor, and mesh number on the iteration number and solution time are studied. The results showed that the solution time of a simple channel decreases about 87%, 77%, and 63% for mesh numbers \( 40\times 400\) , \( 60 \times 600\) , and \( 80 \times 800\) , respectively using the modified LBM as compared with the regular one at under relaxation factor of 0.4 and \( {\rm Re}=100\) . For a blocked channel with one obstacle, the iteration number decreases about 10 times by using the modified LBM as compared with the regular one for a mesh size of \( 40\times 400\) . Finally, the modified LBM enhances the speed of the solution about 57%, 40%, and 73% for the channel with 90-degree bend, the channel with two branching outlets, and blocked channel with two obstacles, respectively, as compared with the regular LBM.

References

  1. 1.
    A.A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (Springer Science & Business Media, 2011)Google Scholar
  2. 2.
    S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, 2001)Google Scholar
  3. 3.
    Y. Wang, D.K. Sun, Y.L. He, W.Q. Tao, Eur. Phys. J. Plus 130, 9 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Tighchi, M. Sobhani, J.A. Esfahani, Eur. Phys. J. Plus 133, 8 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Asadollahi, S. Rashidi, J.A. Esfahani, R. Ellahi, Eur. Phys. J. Plus 133, 306 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Asadollahi, S. Rashidi, J.A. Esfahani, Meccanica 52, 2265 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Asadollahi, S. Rashidi, J.A. Esfahani, Meccanica 53, 803 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Hosseini, S. Rashidi, J.A. Esfahani, J. Braz. Soc. Mech. Sci. Eng. 39, 3695 (2017)CrossRefGoogle Scholar
  9. 9.
    S.H. Musavi, M. Ashrafizaadeh, Int. J. Heat Fluid Flow 59, 10 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.X. Chen, S.C. Chang, W.B. Young, Comput. Math. Appl. 75, 2374 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Kang, Y. Shi, Y. Yan, Comput. Fluids 167, 196 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R.C.V. Coelho, M.M. Doria, Comput. Fluids 165, 144 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.A. Woodgate, G.N. Barakos, R. Steijl, G.J. Pringle, Comput. Fluids 173, 237 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    B.M. Boghosian, F. Dubois, B. Graille, P. Lallemand, M.M. Tekitek, Comput. Fluids 172, 301 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.S. Valipour, S. Rashidi, R. Masoodi, J. Heat Transf. 136, 062601 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Rashidi, M. Maghiar, M.H. Sigari, Iran. J. Sci. Technol., Trans. Civ. Eng. 41, 415 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Rashidi, H. Rashidi-Nejad, M. Maghiar, KSCE J. Civ. Eng. 18, 1580 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Rashidi, M.H. Sigari, M. Maghiar, D. Citrin, KSCE J. Civ. Eng. 20, 1178 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Sukop, D. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer-Verlag, Berlin, Heidelberg, 2006)Google Scholar
  20. 20.
    M. Sukop, D. Or, Physica B 338, 298 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M.C. Sukop, D.T. Thorne jr., Lattice Boltzmann Modeling (Springer, 2006)Google Scholar
  23. 23.
    E. Blosch, W. Shyy, R. Smith, Numer. Heat Transf., Part B: Fundamentals 24, 415 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Fluent Software 6.3 User’s Guide (Fluent Inc. Pune, India)Google Scholar
  25. 25.
    M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Int. J. Heat Fluid Flow 21, 186 (2000)CrossRefGoogle Scholar
  26. 26.
    R.W. Fox, A.T. McDonald, P.J. Pritchard, Introduction to Fluid Mechanics, 6th edition (John Wiley & Sons. Inc. Hoboken, NJ, 2003)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yousef Kazemian
    • 1
  • Javad Abolfazli Esfahani
    • 1
    Email author
  • Saman Rashidi
    • 1
  1. 1.Department of Mechanical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations