Advertisement

TL and OSL cross-dating for Valcorrente site in Belpasso (Catania, Italy)

  • A. M. Gueli
  • V. Garro
  • O. Palio
  • S. Pasquale
  • G. Politi
  • G. StellaEmail author
  • M. Turco
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Focus Point on Past and Present: Recent Advances in the Investigation of Ancient Materials by Means of Scientific Instrumental Techniques

Abstract.

The prehistoric village of Valcorrente (Catania) has been inhabited for a long period, from Late-Final Neolithic to Early Bronze Age. For archaeologists, the site represents an important source of information about this Sicilian prehistoric period, not deeply studied. In order to reconstruct the chronology of the site, pottery samples are collected in different stratigraphic units during archaeological excavations. Most of collected potteries belonged to domestic or coarse types and they cannot be dated on typological and stylistic basis. Thus, cross-dating by ThermoLuminescence (TL) and Optically Stimulated Luminescence (OSL) is employed. The results obtained by OSL and TL have been crossed and statistical analysis in the data elaboration allows us to date the different stratigraphic units involved in the sampling collection and to obtain an accurate chronology reconstruction of the site that is representative of the most important Sicilian prehistoric period.

References

  1. 1.
    O. Palio et al., Not. Preist. Protostoria 3.II, 59 (2016)Google Scholar
  2. 2.
    O. Palio et al., Not. Preist. Protostoria 2.II, 46 (2015)Google Scholar
  3. 3.
    O. Palio, M. Turco, Not. Preist. Protostoria 1.IV, 101 (2014)Google Scholar
  4. 4.
    F. Privitera in Atti della XLI Riunione suencifica IIPP in Sicilia (IIPP, 2012)Google Scholar
  5. 5.
    R. Leighton, Eur. J. Archaeol. 8, 261 (2005)CrossRefGoogle Scholar
  6. 6.
    D. Cocchi Genick, in Atli del congresso nazionale di Lido di Camaiore, (Baroni, Viareggio (Lucca), 2000)Google Scholar
  7. 7.
    A. Bluszcz, Springer Proc. Earth Environ. Sci. 42, 137 (2004)Google Scholar
  8. 8.
    I.K. Bailiff, Archaeometry 49, 827 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Oke, E. Yurdatapan, Talanta 53, 115 (2000)CrossRefGoogle Scholar
  10. 10.
    V. Benea et al., Geocheronometria 28, 9 (2007)Google Scholar
  11. 11.
    N.F. Cano et al., Quat. Int. 352, 176 (2014)CrossRefGoogle Scholar
  12. 12.
    J.S.A. Sánchez et al., Geochronometria 31, 21 (2008)CrossRefGoogle Scholar
  13. 13.
    A.M. Gueli et al., Mediterr. Archaeol. Archaeom. 18, 27 (2018)Google Scholar
  14. 14.
    A.M. Gueli et al., Int. J. Archit. Herit. 9, 485 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Guibert et al., Radiat. Meas. 44, 488 (2009)CrossRefGoogle Scholar
  16. 16.
    H.M. Roberts, A.G. Wintle, Quat. Sci. Rev. 20, 859 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    J.F. Zhang, L.P. Zhou, Radiat. Meas. 42, 1475 (2007)CrossRefGoogle Scholar
  18. 18.
    J.C. Kim et al., Radiat. Meas. 44, 132 (2009)CrossRefGoogle Scholar
  19. 19.
    G. Stella et al., Geochronometria 41, 256 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Gerardi et al., Nat. Hazards Earth Syst. Sci. 12, 1185 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Aitken, Thermoluminescence Dating, 2nd edition (Academic Press, 1985)Google Scholar
  22. 22.
    A.M. Gueli et al., Nuovo Cimento B 124, 885 (2009)Google Scholar
  23. 23.
    A.M. Gueli et al., Nuovo Cimento B 125, 719 (2010)Google Scholar
  24. 24.
    G. Stella et al., Geochronometria 40, 153 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Stella et al., Geochronometria 45, 119 (2018)CrossRefGoogle Scholar
  26. 26.
    M.J. Aitken, Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence (Clarendon Press, 1998)Google Scholar
  27. 27.
    N.A. Spooner, Radiat. Meas. 23, 593 (1994)CrossRefGoogle Scholar
  28. 28.
    J.S. Singarayer, R.M. Bailey, Radiat. Meas. 38, 111 (2004)CrossRefGoogle Scholar
  29. 29.
    M. Jain et al., Anc. TL 23, 9 (2005)Google Scholar
  30. 30.
    A.S. Murray, A.G. Wintle, Radiat. Meas. 37, 377 (2003)CrossRefGoogle Scholar
  31. 31.
    B. Mauz, A. Lang, Anc. TL 22, 1 (2004)Google Scholar
  32. 32.
    S. Prasad, Anc. TL 18, 15 (2000)Google Scholar
  33. 33.
    I. Liritzis et al., Mediterr. Archaeol. Archaeom. 13, 1 (2013)Google Scholar
  34. 34.
    https://doi.org/www.actlabs.com, last access September 2018
  35. 35.
    A.M. Gueli et al., Measurement 118, 289 (2018)CrossRefGoogle Scholar
  36. 36.
    J.R. Prescott, J.T. Hutton, Nucl. Tracks Radiat. Meas. 14, 223 (1988)CrossRefGoogle Scholar
  37. 37.
    R.F. Galbraith et al., Radiat. Meas. 39, 47 (2005)CrossRefGoogle Scholar
  38. 38.
    L. Panzeri et al., Geochronometria 44, 341 (2017)CrossRefGoogle Scholar
  39. 39.
    R.E. Glaser, Encycl. Stat. Sci. 1, 189 (1982)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PH3DRA (Physics for Dating Diagnostics Dosimetry Research and Applications) LabsDepartment of Physics and Astronomy of Catania University and INFN, Sezione di CataniaCataniaItaly
  2. 2.Department of Educational Science of University of CataniaCataniaItaly
  3. 3.Soprintendenza per i Beni Culturali ed Ambientali di CataniaCataniaItaly

Personalised recommendations