Advertisement

An algorithm to generate anisotropic rotating fluids with vanishing viscosity

  • Stefano ViaggiuEmail author
Regular Article

Abstract.

Starting with generic stationary axially symmetric spacetimes depending on two spacelike isotropic orthogonal coordinates x1, x2, we build anisotropic fluids with and without heat flow but with wanishing viscosity. In the first part of the paper, after applying the transformation \(x^{1}\rightarrow J(x^{1})\), \( x^{2}\rightarrow F(x^{2})\) (with \( J(x^{1}), F(x^{2})\) regular functions) to general metrics coefficients \( g_{ab}(x^{1},x^{2}) \rightarrow g_{ab}(J(x^{1}), F(x^{2}))\) with \( G_{x^{1} x^{2}}=0\), being \( G_{ab}\) the Einstein’s tensor, we obtain that \( \tilde{G}_{x^{1} x^{2}}=0\rightarrow G_{x^{1} x^{2}}(J(x^{1}),F(x^{2}))=0\). Therefore, the transformed spacetime is endowed with an energy-momentum tensor \( T_{ab}\) with expression \( g_{ab}Q_{i}+\)heat term (where \( g_{ab}\) is the metric and \( \{Q_{i}\}\), \( i=1\ldots 4\) are functions depending on the physical parameters of the fluid), i.e. without viscosity and generally with a non-vanishing heat flow. We show that after introducing suitable coordinates, we can obtain interior solutions that can be matched to the Kerr one on spheroids or Cassinian ovals, providing the necessary mathematical machinery. In the second part of the paper we study the equation involving the heat flow and thus we generate anisotropic solutions with vanishing heat flow. In this frame, a class of asymptotically flat solutions with vanishing heat flow and viscosity can be obtained. Finally, some explicit solutions are presented with possible applications to a string with anisotropic source and a dark energy-like equation of state.

References

  1. 1.
    G. Neugebauer, Astrophys. J. 414, L97 (1993)CrossRefGoogle Scholar
  2. 2.
    G. Neugebauer, R. Meunel, Phys. Rev. Lett. 73, 2166 (1994)CrossRefGoogle Scholar
  3. 3.
    G. Neugebauer, A. Kleinwachter, R. Meinel, Helv. Phys. Acta 69, 472 (1996)Google Scholar
  4. 4.
    B.K. Harrison, J. Math. Phys. 9, 1744 (1968)CrossRefGoogle Scholar
  5. 5.
    R. Geroch, J. Math. Phys. 12, 918 (1971)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Geroch, J. Math. Phys. 13, 394 (1972)CrossRefGoogle Scholar
  7. 7.
    W. Kimmersley, J. Math. Phys. 14, 651 (1973)CrossRefGoogle Scholar
  8. 8.
    H. Hernandez, L.A. Nunez, U. Percoco, Class Quantum Grav. 16, 871 (1999)CrossRefGoogle Scholar
  9. 9.
    E.N. Glass, J.P. Krisch, Phys. Rev. D 57, R5945 (1998)CrossRefGoogle Scholar
  10. 10.
    P.S. Letelier, Phys. Rev. D 22, 807 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.P. Krisch, E.N. Glass, J. Math. Phys. 43, 1509 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.M.M. Senovilla, Class. Quantum Grav. 4, L 115 (1987)CrossRefGoogle Scholar
  13. 13.
    M.D. Wahlquist, Phys. Rev. 172, 1291 (1968)CrossRefGoogle Scholar
  14. 14.
    J. Winicour, J. Math. Phys. 16, 1805 (1975)CrossRefGoogle Scholar
  15. 15.
    V. Stockum, Proc. R. Soc. Edinb. 57, 135 (1937)CrossRefGoogle Scholar
  16. 16.
    W.B. Bonnor, J. Phys. A: Math. Gen. 10, 1673 (1977)CrossRefGoogle Scholar
  17. 17.
    D. Vogt, P.S. Letelier, Phys. Rev. D 76, 084010 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Gurses, F. Gursey, J. Math. Phys. 16, 2385 (1975)CrossRefGoogle Scholar
  19. 19.
    L. Herrera, L. Jimenez, J. Math. Phys. 23, 2339 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    E.T. Newman, A. Janis, J. Math. Phys. 6, 915 (1965)CrossRefGoogle Scholar
  21. 21.
    T. Papakostas, Int. J. Mod. Phys. D 10, 869 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Viaggiu, Int. J. Mod. Phys. D 15, 1441 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Lewis, Proc. R. Soc. Lond. 136, 176 (1932)CrossRefGoogle Scholar
  24. 24.
    S. Viaggiu, Class. Quantum Grav. 24, 2755 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Viaggiu, Int. J. Mod. Phys. D 19, 1783 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J.L. Hernandez-Pastora, L. Herrera, J. Martin, Class. Quantum Grav. 33, 235005 (2016)CrossRefGoogle Scholar
  27. 27.
    J.L. Hernandez-Pastora, L. Herrera, Phys. Rev. D 95, 024003 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Herrera, J.L. Hernandez-Pastora, Phys. Rev. D 96, 024048 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    K. Dev, M. Gleiser, Gen. Rel. Grav. 35, 1435 (2003)CrossRefGoogle Scholar
  30. 30.
    E.S. Franz, A.R. Liddle, Phys. Lett. B 404, 25 (1997)CrossRefGoogle Scholar
  31. 31.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)Google Scholar
  32. 32.
    R. Bergamini, S. Viaggiu, Class. Quantum Grav. 21, 4567 (2004)CrossRefGoogle Scholar
  33. 33.
    R. Balbinot, R. Bergamini, B. Giorgini, Nuovo Cimento 1, 1 (1983)CrossRefGoogle Scholar
  34. 34.
    S. Viaggiu, Class. Quantum Grav. 22, 2309 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Ehlers, in Théories Relativistes de la gravitation, Colloques Internationaux du CNRS (CNRS Editions, 1962) p. 275Google Scholar
  36. 36.
    B.C. Xanthoupolo, Proc. Soc. London A 395, 381 (1979)CrossRefGoogle Scholar
  37. 37.
    P. Florides, Nuovo Cimento B 13, 1 (1973)CrossRefGoogle Scholar
  38. 38.
    H. Stephamni, J. Math. Phys. 29, 1650 (1988)MathSciNetCrossRefGoogle Scholar
  39. 39.
    D. Garfinkle, E.N. Glass, J.P. Krisch, Gen. Relativ. Gravit. 29, 467 (1997)CrossRefGoogle Scholar
  40. 40.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)MathSciNetCrossRefGoogle Scholar
  41. 41.
    W. Israel, Phys. Rev. D 2, 641 (1970)MathSciNetCrossRefGoogle Scholar
  42. 42.
    E. Kyriakopoulos, Int. J. Mod. Phys. D 22, 1350051 (2013)MathSciNetCrossRefGoogle Scholar
  43. 43.
    L. Herrera, A. Di Prisco, J. Carot, Phys. Rev. D 97, 124003 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica Nucleare, Subnucleare e delle RadiazioniUniversità degli Studi Guglielmo MarconiRomeItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  3. 3.INFN, Sezione di NapoliComplesso Universitario di Monte S. AngeloNapoliItaly

Personalised recommendations