Advertisement

Experimental study of the flow across an elliptic cylinder at subcritical Reynolds number

  • Mohammad Javad Ezadi Yazdi
  • Abdulamir Bak Khoshnevis
Regular Article
  • 15 Downloads

Abstract.

In this work, an incompressible flow across an elliptic cylinder with an axial ratio of 0.5 was experimentally studied in a low-turbulence horizontal wind tunnel at two Reynolds numbers: \( 1.5\times 10^4\) and \( 3.0\times 10^4\) . Hot-wire anemometry measurements were carried out in the cylinder wake to obtain turbulence intensity, average stream-wise velocity, higher-order central moments of velocity signals (i.e. skewness and flatness), and dimensionless vortex shedding frequency for the two Reynolds numbers. The obtained results showed that, the turbulence intensity profiles in the wake become broader as one moves toward downstream and peak turbulence intensities occur at points of high velocity gradient along the velocity profile. With increasing the Reynolds number, lower turbulence intensity and velocity defect parameters were observed within the near-wake zone. It was further observed that, upon the increase in Reynolds number at constant axial ratio, the wake became narrower with its Strouhal number (associated with the Kármán vortex) remaining constant. In addition, the drag coefficient decreased with increasing the Reynolds number. When it came to the drag coefficient, the results of the present research were in good agreement with other experimental works.

References

  1. 1.
    V. Modi, A. Dikshit, AIAA J. 13, 490 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    T. Ota, H. Nishiyama, Y. Taoka, J. Fluids Eng. 109, 149 (1987)CrossRefGoogle Scholar
  3. 3.
    A. Roshko, On the drag and shedding frequency of two-dimensional bluff bodies (National Aeronautics and Space Adiministration, 1954) No. TN3169Google Scholar
  4. 4.
    M.S. Kim, A. Sengupta, J. Mech. Sci. Technol. 19, 877 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Kwon, PhD Thesis Dissertation, Dept. of Aerospace Engineering, Korea Advanced Instiute of Science and Technology, Daejeon, Korea (2006)Google Scholar
  6. 6.
    M.S. Kim, Y.B. Park, J. Mech. Sci. Technol. 20, 167 (2006)CrossRefGoogle Scholar
  7. 7.
    M.S. Kim, H.M. Jeon, Y.T. Lim, J. Mech. Sci. Technol. 22, 2286 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Nagarani, K. Mayilsamy, A. Murugesan, Eur. J. Sci. Res. 73, 143 (2012)Google Scholar
  9. 9.
    M. Ozgoren, Flow Meas. Instrum. 17, 225 (2006)CrossRefGoogle Scholar
  10. 10.
    W. Sun, Z. Gao, Y. Du, F. Xu, Chin. J. Aeronaut. 28, 687 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Paul, K. Arul Prakash, S. Vengadesan, Numer. Heat Transf., Part A: Appl. 64, 648 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Ezadi Yazdi, A. Bak Khoshnevis, Fluid Mech. Aerodyn. J. 4, 51 (2016) (in Persian)Google Scholar
  13. 13.
    A. Bak Khoshnevis, M.J. Ezadi Yazdi, E. Gholiepour Asrami, J. Mech. Eng. 45, 39 (2015) (in Persian)Google Scholar
  14. 14.
    A. Bak Khoshnevis, S. Nazari, M.J. Ezadi Yazdi, J. Solid Fluid Mech. 7, 149 (2017) (in Persian)Google Scholar
  15. 15.
    K. Lua, T. Lim, K. Yeo, Exp. Fluids 49, 1065 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Ruifeng, Fluid Dyn. Res. 47, 045503 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.J. Ezadi Yazdi, A. Bak Khoshnevis, J. Turbul. 19, 529 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    G. Alonso, J. Meseguer, A. Sanz-Andrs, E. Valero, J. Wind Eng. Ind. Aerodyn. 98, 438 (2010)CrossRefGoogle Scholar
  19. 19.
    F.B. Fonseca, S.S. Mansur, E.D.R. Vieira, in Proceeding of the 22nd International Congress of Mechanical Engineering (COBEM 2013), November 3–7, Ribeiro Preto, SP, Brazil (2013) pp. 4089--4100Google Scholar
  20. 20.
    T. Takeuchi, J. Maeda, T. Hayata, H. Kawashita, in Proceeding of the 7th Asia-Pacific Conference on Wind Engineering, November 8–12, Taipei, Taiwan (2009)Google Scholar
  21. 21.
    S. Yavuzkurt, J. Fluids Eng. 106, 181 (1984)CrossRefGoogle Scholar
  22. 22.
    S. Goldstein, Proc. R. Soc. London Series A, Math. Phys. Sci. 155, 570 (1936)ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Van Dam, Prog. Aerospace Sci. 35, 751 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    R.D. Blevins, Applied Fluid Dynamics Handbook, first Ed. (Van Nostrand Reinhold Co., New York, 1984)Google Scholar
  25. 25.
    C.W. de Araujo, V.G. Guedes, G.C. Bodstein, in 18th International Congress of Mechanical Engineering, November 6–11, Ouro Preto, MG (2005)Google Scholar
  26. 26.
    W. Lindsey, NACA report (Citeseer, 1938)Google Scholar
  27. 27.
    M. Ardekani, M.M. Motlagh, Measurement 43, 31 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Ardekani, Measurement 42, 722 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer Science & Business Media, 2003)Google Scholar
  30. 30.
    M. Ardekani, M. Aminy, A. Khoshnevis, Measurement 43, 527 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Fabris, Phys. Fluids 26, 1437 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    D.V. Petrović, Robot. 2, 655 (1998)Google Scholar
  33. 33.
    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, New York, 2001)Google Scholar
  34. 34.
    A. Mariotti, G. Buresti, Exp. Fluids 54, 1612 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Mariotti, G. Buresti, G. Gaggini, M.V. Salvetti, J. Fluid Mech. 832, 514 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations