Advertisement

Natural convection channel flow of CMC-based CNTs nanofluid

  • Muhammad Saqib
  • Ilyas Khan
  • Sheridan Shafie
Regular Article

Abstract.

Fractional order derivatives are more efficient compared to classical derivatives to formulate a physical phenomenon having diverse and widespread applications in science and technology. Their results are comparatively accurate and can interpret memory effect. On the other hand, nanofluids are considered as the next generation of fluids having superior thermo-physical properties to enhance heat transfer rate. Therefore, it is important to study nanofluids and fractional derivatives together. This article deals with the natural convection flow of Carboxy-Methyl-Cellulose (CMC) based carbon nanotubes (CNTs) nanofluid in a two parallel plates channel. CNTs are taken in single and multiple wall shapes (SWCNTs and MWCNTs). The non-Newtonian CMC base fluid is presented by the governing equation of the Jeffery fluid and energy equation with effective thermophysical properties of nanofluids. The problem is subjected to static velocity and constant temperature boundary conditions on the plates together with initial conditions. The governing equations are generalized using the Caputo-Fabrizio fractional derivative (CFFD) approach without a singular kernel. Exact solutions are obtained via the Laplace transform method. In the limiting sense, the results of fractional second grade and Newtonian viscous nanofluids and fluid are recovered. Moreover, for \( \alpha\rightarrow 1\), the solutions for classical Jeffery, classical second grade and classical Newtonian viscous nanofluids regular fluid are obtained. To examine the influences of various pertinent parameters, the parametric study is carried out through graphs. An opposite trend of velocity and temperature is noticed for increasing \( \alpha\) and \( \phi\) for both SWCNTs and MWCNTs whereas the Nusselt number increases with an increase in \( \alpha\) and \( \phi\) .

References

  1. 1.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1 (Clarendon Press, 1881)Google Scholar
  2. 2.
    X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)CrossRefGoogle Scholar
  3. 3.
    S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne National Lab., IL, USA, 1995)Google Scholar
  4. 4.
    Y. Ma et al., Phys. Fluids 30, 032001 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    M. Sheikholeslami, M. Shamlooei, R. Moradi, J. Mol. Liq. 249, 429 (2018)CrossRefGoogle Scholar
  6. 6.
    R.B. Ganvir, P.V. Walke, V.M. Kriplani, Renew. Sustain. Energy Rev. 75, 451 (2017)CrossRefGoogle Scholar
  7. 7.
    E. Abu-Nada, Int. J. Therm. Sci. 123, 58 (2018)CrossRefGoogle Scholar
  8. 8.
    S.R. Hosseini et al., Powder Technol. 324, 36 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Shi et al., Int. Commun. Heat Mass Transf. 90, 111 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    P.M. Ajayan, Nature 361, 333 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    S. Wang et al., J. Hazard. Mater. 342, 177 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Arya et al., Heat Mass Transf. 54, 985 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    P. Rathnakumar et al., Chem. Eng. Process.-Process Intensif. 127, 103 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Arabpour, A. Karimipour, D. Toghraie, J. Therm. Anal. Calorim. 131, 1553 (2018)CrossRefGoogle Scholar
  16. 16.
    A.A.A.A. Al-Rashed et al., J. Mol. Liq. 252, 454 (2018)CrossRefGoogle Scholar
  17. 17.
    N.S. Akbar, D. Tripathi, Z.H. Khan, Discrete Contin. Dyn. Syst.-S 11, 583 (2018)Google Scholar
  18. 18.
    A. Atangana, Chaos, Solitons Fractals 114, 347 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 1 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Gemant, Physica 7, 311 (1936)Google Scholar
  24. 24.
    R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    M. Caputo, F. Mainardi, Riv. Nuovo Cimento 1, 161 (1971)CrossRefGoogle Scholar
  27. 27.
    N. Makris, G.F. Dargush, M.C. Constantinou, J. Eng. Mech. 119, 1663 (1993)CrossRefGoogle Scholar
  28. 28.
    S.S. Sheoran, P. Kundu, Int. J. Adv. Appl. Math. Mech. 3, 76 (2016)MathSciNetGoogle Scholar
  29. 29.
    J. Hristov, Frontiers 1, 270 (2017)Google Scholar
  30. 30.
    J. Hristov, Prog. Fract. Differ. Appl. 3, 1 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Hristov, Therm. Sci. 21, 827 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Hristov, Therm. Sci. 20, 757 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Atangana, Chaos, Solitons Fractals 102, 396 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Atangana, J.F. Gómez-Aguilar, Physica A 476, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Atangana, I. Koca, J. Nonlinear Sci. Appl. 9, 5 (2016)Google Scholar
  36. 36.
    K. Kalidasan, P.R. Kanna, J. Taiwan Inst. Chem. Eng. 65, 331 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 1 (2015)Google Scholar
  38. 38.
    M. Saqib et al., Alex. Eng. J. 57, 1849 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Saqib, J. Therm. Anal. Calorim.  https://doi.org/10.1007/s10973-018-7054-9 (2018)
  40. 40.
    I. Khan, M. Saqib, F. Ali, Eur. Phys. J. ST 226, 3791 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Saqib, I. Khan, S. Shafie, Chaos, Solitons Fractals 116, 79 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    N.A. Sheikh et al., Math. Probl. Eng. 2017, 9402964 (2017)CrossRefGoogle Scholar
  43. 43.
    N.A.M. Zin, I. Khan, S. Shafie, Neural Comput. Appl. 30, 3491 (2017)Google Scholar
  44. 44.
    N. Ghara et al., Am. J. Sci. Ind. Res. 3, 376 (2012)Google Scholar
  45. 45.
    H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)ADSCrossRefGoogle Scholar
  46. 46.
    K. Kahveci, J. Heat Transf. 132, 062501 (2010)CrossRefGoogle Scholar
  47. 47.
    Q.Z. Xue, Physica B 368, 302 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    W.A. Azhar, D. Vieru, C. Fetecau, Phys. Fluids 29, 082001 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    J. Losada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  50. 50.
    M. Narahari, R. Pendyala, AIP Conf. Proc. 1557, 121 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    N.A. Sheikh et al., Eur. Phys. J. Plus 132, 540 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, Faculty of ScienceUniversiti Teknologi MalaysiaUTM Johar BahruMalaysia
  2. 2.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations