Advertisement

Energy momentum tensor for translation invariant renormalizable noncommutative field theory

  • Ezinvi Baloïtcha
  • Vincent Lahoche
  • Dine Ousmane SamaryEmail author
Open Access
Regular Article

Abstract.

In this paper, we derive the energy momentum tensor for the translation invariant noncommutative Tanasa et al. scalar field model. The Wilson regularization procedure is used to improve this tensor and the local conservation property is recovered. The same question is addressed in the case where the Moyal star product is deformed including the tetrad fields. It provides us with an extension of the recent work (J. Phys. A: Math. Theor. 43, 155202 (2010)), regarding the computation and properties of the Noether currents to the renormalizable models.

Notes

Acknowledgments

Open Access funding provided by Max Planck Society.

References

  1. 1.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) hep-th/0106048ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Szabo, Phys. Rep. 378, 207 (2003) hep-th/0109162ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Commun. Math. Phys. 267, 515 (2006) hep-th/0512271ADSCrossRefGoogle Scholar
  4. 4.
    H. Grosse, R. Wulkenhaar, Fortsch. Phys. 53, 634 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    H. Grosse, R. Wulkenhaar, Commun. Math. Phys. 256, 305 (2005) hep-th/0401128ADSCrossRefGoogle Scholar
  6. 6.
    D. D'Ascanio, P. Pisani, D.V. Vassilevich, Eur. Phys. J. C 76, 180 (2016) arXiv:1602.01479 [hep-th]ADSCrossRefGoogle Scholar
  7. 7.
    A. Tanasa, SIGMA 6, 047 (2010) arXiv:1003.4877 [hep-th]Google Scholar
  8. 8.
    A. Tanasa, P. Vitale, Phys. Rev. D 81, 065008 (2010) arXiv:0912.0200 [hep-th]ADSCrossRefGoogle Scholar
  9. 9.
    R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa, Commun. Math. Phys. 287, 275 (2009) arXiv:0802.0791 [math-ph]ADSCrossRefGoogle Scholar
  10. 10.
    A. Tanasa, Rom. J. Phys. 53, 1207 (2008) arXiv:0808.3703 [hep-th]Google Scholar
  11. 11.
    A. Tanasa, J. Phys. A 42, 365208 (2009) arXiv:0807.2779 [math-ph]MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995) hep-th/0303037ADSCrossRefGoogle Scholar
  13. 13.
    S. Majid, Lect. Notes Phys. 541, 227 (2000) hep-th/0006166ADSCrossRefGoogle Scholar
  14. 14.
    P. Aschieri, L. Castellani, Gen. Relativ. Gravit. 45, 411 (2013) arXiv:1206.4096 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    P. Aschieri, M. Dimitrijevic, P. Kulish, F. Lizzi, J. Wess, Lect. Notes Phys. 774, 1 (2009)Google Scholar
  16. 16.
    P. Aschieri, L. Castellani, M. Dimitrijevic, Lett. Math. Phys. 85, 39 (2008) arXiv:0803.4325 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Aschieri, J. Phys. Conf. Ser. 53, 799 (2006) hep-th/0608172ADSCrossRefGoogle Scholar
  18. 18.
    P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quantum Grav. 23, 1883 (2006) hep-th/0510059ADSCrossRefGoogle Scholar
  19. 19.
    M.N. Hounkonnou, D.O. Samary, J. Math. Phys. 51, 102108 (2010) arXiv:1008.1325 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.N. Hounkonnou, D.O. Samary, J. Phys. A 44, 315401 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Micu, M.M. Sheikh Jabbari, JHEP 01, 025 (2001) hep-th/0008057ADSCrossRefGoogle Scholar
  22. 22.
    E. Langmann, R.J. Szabo, Phys. Lett. B 533, 168 (2002) hep-th/0202039ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Ben Geloun, M.N. Hounkonnou, Phys. Lett. B 653, 343 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Ben Geloun, M.N. Hounkonnou, AIP Conf. Proc. 956, 55 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M.N. Hounkonnou, D.O. Samary, AIP Conf. Proc. 1079, 82 (2008) arXiv:1203.5564 [math-ph]ADSCrossRefGoogle Scholar
  26. 26.
    M.N. Hounkonnou, D.O. Samary, J. Phys. A 43, 155202 (2010) arXiv:0909.4562 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Ben Geloun, A. Tanasa, Lett. Math. Phys. 86, 19 (2008) arXiv:0806.3886 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Rivasseau, From Perturbative to Constructive Renormalization (Princeton University Press, Princeton, 1991)Google Scholar
  29. 29.
    A. Gerhold, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, R. Wulkenhaar, The energy momentum tensor on noncommutative spaces. Some pedagogical comments, hep-th/0012112Google Scholar
  30. 30.
    M. Abou-Zeid, H. Dorn, Phys. Lett. B 514, 183 (2001) hep-th/0104244ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Jackiw, Dynamical Symmetry Breaking, MIT-CTP-403Google Scholar
  32. 32.
    C.G. Callan Jr., S.R. Coleman, R. Jackiw, Ann. Phys. 59, 42 (1970)ADSCrossRefGoogle Scholar
  33. 33.
    S.R. Coleman, R. Jackiw, Ann. Phys. 67, 552 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ghosh, Space-time symmetries in noncommutative gauge theory: A Hamiltonian analysis, hep-th/0310155Google Scholar
  35. 35.
    A.K. Das, J. Frenkel, Phys. Rev. D 67, 067701 (2003) hep-th/0212122ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    J.M. Grimstrup, B. Kloibock, L. Popp, V. Putz, M. Schweda, M. Wickenhauser, Int. J. Mod. Phys. A 19, 5615 (2004) hep-th/0210288ADSCrossRefGoogle Scholar
  37. 37.
    H. Balasin, D.N. Blaschke, F. Gieres, M. Schweda, Eur. Phys. J. C 75, 284 (2015) arXiv:1502.03765 [hep-th]ADSCrossRefGoogle Scholar
  38. 38.
    T. Nakamura, S. Hamamoto, Prog. Theor. Phys. 95, 469 (1996) hep-th/9511219ADSCrossRefGoogle Scholar
  39. 39.
    M. Ostrogradski, Mem. Ac. St. Petersbourg V14, 385 (1850)Google Scholar
  40. 40.
    K. Bering, A note on nonlocality and Ostrogradski's construction, hep-th/0007192Google Scholar
  41. 41.
    J. Gomis, K. Kamimura, J. Llosa, Phys. Rev. D 63, 045003 (2001) hep-th/0006235ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Faculté des Sciences et Techniques, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair)University of Abomey-CalaviCotonouBenin
  2. 2.LaBRIUniv.Bordeaux 351 cours de la LibérationTalenceFrance
  3. 3.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany

Personalised recommendations