Advertisement

Inflationary gravitational waves from unified spinor fields

  • Luis Santiago Ridao
  • Marcos R. A. Arcodía
  • Jesús Martín Romero
  • Mauricio BelliniEmail author
Regular Article
  • 9 Downloads

Abstract.

Recent observations of Gravitational Waves (GW) generated by black-hole collisions have opened a new window to explore the universe in diverse scales. Detection of primordial gravitational waves is expected to happen in the next years. However, the standard theory to describe these effects was developed for weak gravitational waves, when their dynamics can be linearized. In this work we develop a non-perturbative formalism to describe GW using the Unified Spinor Fields (USF) theory. The tensor index is calculated and we obtain that it must be \( 0.0283 < n_{T} < 0.0407\), in order for the + and × polarisations modes to have the same spectrum. This imposes some restriction on the constant of self-interaction \( 3.0018 < \xi^{2} < 3.0025\) of the fermionic source. The most relevant result here obtained is that the intensity of energy density for GW during inflation is \( 1.25\times 10^{-4}(\frac{m}{H})^{2} < \Omega_{GW} < 1.75\times 10^{-4} (\frac{m}{H})^{2}\), where m is the mass of the spin-(1/2 fermionic fields and H the Hubble parameter during inflation. This cut imposes restrictions on the mass of these fields: \( (\frac{m}{H})^{2}\lesssim 1.1 h_{0}^{2} \times 10^{-11}\).

References

  1. 1.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1918, 154 (1918)Google Scholar
  2. 2.
    A. Einstein, N. Rosen, J. Frankl. Inst. 223, 43 (1937)ADSCrossRefGoogle Scholar
  3. 3.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 241103 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. X 6, 041015 (2016)Google Scholar
  6. 6.
    VIRGO, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 118, 221101 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 119, 141101 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Virgo, LIGO Scientific Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    S.W. Hawking, Thomas Hertog, Neil Turok, Phys. Rev. D 62, 063502 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Michael S. Turner, Frank Wilczek, Phys. Rev. Lett. 65, 3080 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    Jai-chan Hwang, Class. Quantum Grav. 15, 1401 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    A.H. Guth, Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    A.D. Linde, Phys. Lett. B 129, 177 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    S.P. Gómez Martínez, J.E. Madriz Aguilar, M. Bellini, Phys. Lett. B 649, 343 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    S.P. Gómez Martínez, L.P. da Silva, J.E. Madriz Aguilar, M. Bellini, Nuovo Cimento B 122, 897 (2007)ADSGoogle Scholar
  17. 17.
    M.Ch. Guzzetti, N. Bartolo, M. Liguori, S. Matarrese, Riv. Nuovo Cimento 39, 399 (2016)Google Scholar
  18. 18.
    M.R.A. Arcodía, L.S. Ridao, M. Bellini, Can. J. Phys. (2018)  https://doi.org/10.1139/cjp-2018-0124
  19. 19.
    L.S. Ridao, M. Bellini, Phys. Lett. B 751, 565 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    L.S. Ridao, M. Bellini, Astrophys. Space Sci. 357, 94 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Planck Collab. 2015 Results XIII, Astron. Astrophys. A 13, 594 (2016)Google Scholar
  22. 22.
    M.R.A. Arcodía, L.S. Ridao, M. Bellini, Astrophys. Space Sci. 361, 296 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S. Chongchitnan, G. Efstathiou, Phys. Rev. D 73, 083511 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    N. Pinto-Neto, A. Scardua, Phys. Rev. D 95, 123522 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.I. Musmarra, M. Anabitarte, M. Bellini, Inflationary expansion of the universe with variable timescale, arXiv:1805.02565Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations