Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation

  • M. Hamid
  • M. Usman
  • Z. H. KhanEmail author
  • R. U. Haq
  • W. Wang
Regular Article


The present research work is dedicated to examine the heat and mass transport phenomenon due to unsteady MHD flow of Williamson nanofluid between the permeable channel with heat source/sink. The influence of buoyancy and thermal radiation effects are also considered for the present model. The flow equations are reduced to an equivalent nonlinear coupled partial differential equations (PDE) through suitable transformation. The numerical simulation is performed to attain the solution of the nonlinear system via the Crank-Nicolson finite difference scheme. The influence of various emerging parameters on velocity, temperature and concentration profiles are developed. The magnetic parameter plays the significant role to enhance the heat transfer rate but reduces the velocity profile. The velocity of the fluid increases gradually with respect to time and this influence is dominant at the center of the channel. Additionally, the velocity profile exhibits the increasing behavior by varying the Reynolds number for a small time. In the entire study it is analyzed that the temperature profile increases for increasing values of Reynolds, thermophoresis, Brownian motion and heat source numbers, while a low temperature profile is attained for Biot numbers. The thermophoresis and Brownian motion parameters provide the decreasing concentration profile however, an increasing result is noticed for Biot numbers. An increase in the values of Williamson parameter \( \Lambda\), illustrates the increase effects on the skin friction coefficient when \( \eta=1\) while it shows the decrease behavior at \( \eta=0\). The effects of the Reynolds number on streamlines pattern is presented. It is noticed that the higher values of Re affects the stream line pattern.


  1. 1.
    M.N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Willey, New York, 1973)Google Scholar
  2. 2.
    W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, R. Zou, Energy & Environmental Science 11, 1392 (2018)CrossRefGoogle Scholar
  3. 3.
    O.D. Makinde, Int. Commun. Heat Mass Transf. 32, 1411 (2005)CrossRefGoogle Scholar
  4. 4.
    S.T. Mohyud-Din, M. Usman, K. Afaq, M. Hamid, W. Wang, Eng. Comput. 34, 2330 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Usman, T. Zubair, M. Hamid, R.U. Haq, W. Wang, Phys. Fluids 30, 023104 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Usman, M. Hamid, T. Zubair, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 126, 1347 (2018)CrossRefGoogle Scholar
  7. 7.
    S.U.S. Choi, ASME FED 231, 99 (1995)Google Scholar
  8. 8.
    S.U.S. Choi, S.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Buongiorno, J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  10. 10.
    R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Usman, M. Hamid, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 123, 888 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Hamid, M. Usman, T. Zubair, R.U. Haq, W. Wang, Int. J. Heat Mass Transfer 124, 706 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Usman, R.U. Haq, M. Hamid, W. Wang, J. Mol. Liq. 249, 856 (2018)CrossRefGoogle Scholar
  14. 14.
    O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013)CrossRefGoogle Scholar
  15. 15.
    W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 74, 285 (2014)CrossRefGoogle Scholar
  16. 16.
    N.F. Noor, R.U. Haq, S. Nadeem, I. Hashim, Meccanica 50, 2007 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B.J. Gireesha, M. Archana, R.R. Gorla, O.D. Makinde, Int. J. Numer. Methods Heat Fluid Flow 27, 2858 (2017)Google Scholar
  18. 18.
    R.V. Williamson, Ind. Eng. Chem. 21, 1108 (1929)CrossRefGoogle Scholar
  19. 19.
    D.V. Lyubimov, A.V. Perminov, J. Eng. Phys. Thermophys. 75, 920 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Salahuddin, M.Y. Malik, A. Hussain, S. Bilal, M. Awais, J. Magn. & Magn. Mater. 401, 991 (2016)CrossRefGoogle Scholar
  21. 21.
    N.S. Akbar, S. Nadeem, C. Lee, Z.H. Khan, R.U. Haq, Results Phys. 3, 161 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Bilal, M.Y. Malik, A. Hussain, M. Khan, Results Phys. 7, 204 (2017)CrossRefGoogle Scholar
  23. 23.
    C.H. Amanulla, N. Nagendra, A.R. Subba, O.A. Beg, A. Kadir, Heat Transf. Asian Res. 47, 286 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Crank, P. Nicolson, Adv. Comput. Math. 6, 207 (1996)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F.A. Soomro, Z.H. Khan, R.U. Haq, Q. Zhang, Results Phys. 10, 379 (2018)CrossRefGoogle Scholar
  26. 26.
    U.M. Ascher, S.J. Ruuth, B.T. Wetton, SIAM J. Numer. Anal. 32, 797 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M.K. Kadalbajoo, A. Awasthi, Appl. Math. Comput. 182, 1430 (2006)MathSciNetGoogle Scholar
  28. 28.
    D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 242, 670 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and HydropowerSichuan UniversityChengduChina
  3. 3.Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of EducationTsinghua UniversityBeijingChina
  4. 4.Department of Electrical EngineeringBahria UniversityIslamabadPakistan

Personalised recommendations