Natural convection of third-grade non-Newtonian fluid flow in a porous medium with heat source: Analytical solution

  • Peyman Maghsoudi
  • Gholamreza ShahriariEmail author
  • Mostafa Mirzaei
  • Mohammad Mirzaei
Regular Article


Heat transfer by natural convection occurs in many physical and engineering applications. Governing equations of these problems are non-linear and need special methods for being solved. This paper aims to conduct an analytical analysis on the natural convection of a non-Newtonian fluid flow between two infinite vertical flat plates within a porous medium considering a variable heat source. The addition of porous medium and heat source marks the difference between the present work and previous researches. In the first phase of the current analysis, the governing equations including partial differential equations (PDE) are turned into ordinary differential equations (ODE) utilizing the similarity solution. Afterwards, a system of differential equations is solved using the Least Square Method (LSM), and reliable functions for the temperature and velocity distributions are presented. In order to investigate the accuracy of this method, the governing equations are also solved using numerical solutions. Proper agreement is observed between the analytical and numerical results. Regarding the very small errors observed in the results yielded by the LSM method, it can be concluded that this method is an efficient and reliable approach for solving non-linear ordinary differential equations. Finally, the effects of two main parameters, namely porosity and heat source parameters, are meticulously discussed. It is shown that as the value of the heat source parameter increases, the values of velocity and temperature decrease. Also, the results indicate that by enhancing the porosity parameter the flow velocity decreases, whereas there is no change in temperature. The results could be helpful for systems such as geothermal systems, heat exchangers, petroleum reservoirs and nuclear waste repositories in which natural convection is important.


  1. 1.
    O.A. Jianu, M.A. Rosen, Eur. J. Sustain. Develop. Res. 1, 12 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Amiri, R. Talebitooti, L. Li, Eur. Phys. J. Plus 133, 252 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Dejam, H. Hassanzadeh, Int. J. Greenh. Gas Control 78, 177 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Dejam, H. Hassanzadeh, Adv. Water Res. 111, 36 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Dejam, H. Hassanzadeh, Z. Chen,, J. Contam. Hydrol. 185-186, 87 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Dejam, H. Hassanzadeh, Z. Chen, Adv. Water Res. 74, 14 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Dejam, Chem. Eng. Sci. 189, 296 (2018)CrossRefGoogle Scholar
  8. 8.
    E. Amirian, M. Dejam, Z. Chen, Fuel 216, 83 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Saboorian-Jooybari, M. Dejam, Z. Chen, J. Petrol. Sci. Eng. 142, 85 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Saboorian-Jooybari, M. Dejam, Z. Chen, Half-century of heavy oil polymer flooding from laboratory core floods to pilot tests and field applications, in Heavy Oil Technical Conference, Calgary, Alberta, Canada, 9–11 June 2015 Paper SPE 174402, (SPE, Canada, 2015)Google Scholar
  11. 11.
    V. Mashayekhizadeh, S. Kord, M. Dejam, Spec. Top. Rev. Porous Media - Int. J. 5, 325 (2014)CrossRefGoogle Scholar
  12. 12.
    W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering, Vol. 5 (McGraw-Hill, New York, 1993) p. 154Google Scholar
  13. 13.
    R.W. Bruce, T.Y. Na, Natural convection flow of Powell-Eyring fluids between two vertical flat plates (ASME, 1967)Google Scholar
  14. 14.
    A.V. Shenoy, R.A. Mashelkar, Adv. Heat Transf. 15, 143 (1982)CrossRefGoogle Scholar
  15. 15.
    K.R. Rajagopal, T.Y. Na, Acta Mech. 54, 239 (1985)CrossRefGoogle Scholar
  16. 16.
    A.H. Nayfeh, Perturbation Methods (Wiley, New York, 1973)Google Scholar
  17. 17.
    D.D. Ganji, H.B. Rokni, M.G. Sfahani, S.S. Ganji, Adv. Eng. Softw. 41, 956 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Rafei, D.D. Ganji, Int. J. Nonlinear Sci. Numer. Simul. 7, 321 (2006)CrossRefGoogle Scholar
  19. 19.
    J.H. He, Int. J. Mod. Phys. B 20, 2561 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    F. Soltanian, M. Dehghan, S.M. Karbassi, Int. J. Comput. Math. 87, 1950 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Esmaeilpour, D.D. Ganji, Phys. Lett. A 372, 33 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    D.D. Ganji, H. Tari, M.B. Jooybari, Comput. Math. Appl. 54, 1018 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D.D. Ganji, Phys. Lett. A 355, 337 (2006)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S.Q. Wang, J.H. He, Phys. Lett. A 367, 188 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    H.N. Hassan, M.M. Rashidi, Walailak J. Sci. Technol. 10, 479 (2013)Google Scholar
  26. 26.
    A. Shahzad, A.L.I. Ramzan, Walailak J. Sci. Technol. 10, 43 (2012)Google Scholar
  27. 27.
    S. Abbasbandy, Chaos, Solitons Fract. 31, 257 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    D. Shi, J. Ren, Nonlinear Anal.: Theory, Methods Appl. 72, 1653 (2010)CrossRefGoogle Scholar
  29. 29.
    P. Hessari, Comput. Math. Appl. 68, 309 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    I.R. Petroudi, D.D. Ganji, M.K. Nejad, J. Rahimi, E. Rahimi, A. Rahimifar, Case Stud. Therm. Eng. 4, 193 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Etbaeitabari, M. Barakat, A.A. Imani, G. Domairry, P. Jalili, J. Mol. Liq. 188, 252 (2013)CrossRefGoogle Scholar
  32. 32.
    Z. Ziabakhsh, G. Domairry, Commun. Nonlinear Sci. Numer. Simul. 14, 1868 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M. Hatami, J. Hatami, D.D. Ganji, Comput. Methods Progr. Biomed. 113, 632 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Sheikholeslami, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peyman Maghsoudi
    • 1
  • Gholamreza Shahriari
    • 2
    Email author
  • Mostafa Mirzaei
    • 3
  • Mohammad Mirzaei
    • 2
  1. 1.School of EngineeringUniversity of Tehran, AmirabadTehranIran
  2. 2.School of EngineeringIran University of Science and TechnologyTehranIran
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringUniversity of QomQomIran

Personalised recommendations