Advertisement

Fractional-order three-dimensional thin-film nanofluid flow on an inclined rotating disk

  • Taza Gul
  • Muhammad Altaf KhanEmail author
  • Amer Khan
  • Muhammad Shuaib
Regular Article

Abstract.

The aim of the present study is to examine the fractional-order three-dimensional thin-film nanofluid flow over an inclined rotating plane. The basic governing equations are transformed through similarity variables into a set of first-order differential equations. The Caputo derivatives have been used to transform the first-order differential equations into a system of fractional differential equations. The Adams-type predictor-corrector method for the numerical solution of the fractional-differential-equations method has been used for the solution of the fractional-order differential. The classical solution of the problem has been obtained through the RK4 method. The comparison of the classical- and fractional-order results has been made for the various embedded parameters like variable thickness, unsteadiness parameter, Prandtl number, Schmidt number, Brownian-motion parameter and thermophoretic parameter. The important terms of the Nusselt number and Sherwood number have also been analysed physically and numerically for both classical and fractional order.

References

  1. 1.
    E.M. Sparrow, J.L. Gregg, J. Heat Transf. 81, 113 (1959)CrossRefGoogle Scholar
  2. 2.
    P.M. Beckett, P.C. Hudson, G. Poots, J. Eng. Math. 7, 63 (1973)CrossRefGoogle Scholar
  3. 3.
    S.P. Chary, P.K. Sarma, J. Heat Transf. 98, 684 (1976)CrossRefGoogle Scholar
  4. 4.
    M. Sheikholeslami, Hatami, D.D. Ganji, J. Mol. Liq. 211, 577 (2015)CrossRefGoogle Scholar
  5. 5.
    H.A. Attia, Fluid Dyn. Res. 23, 283 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    N. Bachok, A. Ishak, I. Pop, Int. J. Heat Mass Transfer 55, 2102 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Freidoonimehr, M.M. Rashidi, S. Mahmud, Int. J. Therm. Sci. 87, 136 (2015)CrossRefGoogle Scholar
  8. 8.
    O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, J. Mol. Liq. 219, 624 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Akbar, S. Batool, R. Nawaz, Q.M.Z. Zia, Adv. Mech. Eng. 9, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Ramzan, J.D. Chung, N. Ullah, Results Phys. 7, 3557 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    A.A.A. Abdullah Al-Rashed, K. Kalidasan, L. Kolsi, A. Aydi, E.H. Malekshah, A.K. Hussein, P.R. Kanna, J. Mol. Liq. 252, 454 (2018)CrossRefGoogle Scholar
  12. 12.
    S.A. Ali, T. Gul, Eur. Phys. J. Plus 132, 495 (2017)CrossRefGoogle Scholar
  13. 13.
    T. Gul, K. Firdous, Applied Nanoscience (2018),  https://doi.org/10.1007/s13204-018-0851-4
  14. 14.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)Google Scholar
  15. 15.
    D. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1413 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    D. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1403 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Carreras, V.E. Lynch, M.M. Zaslavsky, Phys. Plasma 8, 5096 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M.F. Shlesinger, B.J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    G.M. Zaslavsky, D. Stevens, H. Weitzner, Phys. Rev. E 48, 1683 (1993)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I.M. Sokolov, J. Klafter, A. Blumen, Phys. Today 55, 48 (2002)CrossRefGoogle Scholar
  21. 21.
    J.W. Kirchner, X. Feng, C. Neal, Nature 403, 524 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    M. Raberto, E. Scalas, F. Mainardi, Physica 314, 749 (2002)CrossRefGoogle Scholar
  23. 23.
    L. Sabatelli, S. Keating, J. Dudley, P. Richmond, Eur. Phys. J. B 27, 273 (2002)ADSGoogle Scholar
  24. 24.
    R. Hilfer, Applications of Fractional Calculus in Physics (Word Scientific, Singapore, 2000)Google Scholar
  25. 25.
    R. Metler, J. Klafter, Phys. Rep. 339, 1 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    R. Metler, J. Klafter, J. Phys. A 37, 161 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  28. 28.
    M. Caputo, Water Resour. Res. 36, 693 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  30. 30.
    A. Atangana, R.T. Alqahtani, Adv. Differ. Equ. 16, 156 (2016)CrossRefGoogle Scholar
  31. 31.
    B.S.T. Alkahtani, I. Koca, A. Atangana, J. Nonlinear Sci. Appl. 9, 48 (2016)Google Scholar
  32. 32.
    A. Atangana, J.F. Gomez Aguila, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    K. Ervin Lenzi, A. Tateishi Angel, V. Haroldo Ribeiro, Front. Phys. 5, 1 (2017)Google Scholar
  36. 36.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Ullah, M. Altaf Khan, M. Farooq, Eur. Phys. J. Plus 133, 313 (2018)CrossRefGoogle Scholar
  38. 38.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29, 3 (2002)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taza Gul
    • 1
  • Muhammad Altaf Khan
    • 1
    Email author
  • Amer Khan
    • 1
  • Muhammad Shuaib
    • 1
  1. 1.Department of MathematicsCity University of Science and Information TechnologyPeshawar, KPPakistan

Personalised recommendations