Advertisement

On the interaction of the scalar field with a Coulomb-type potential in a spacetime with a screw dislocation and the Aharonov-Bohm effect for bound states

  • R. L. L. Vitória
  • K. Bakke
Regular Article
  • 15 Downloads

Abstract.

We investigate topological effects on the interaction of a scalar field with a Coulomb-type potential in a spacetime with a screw dislocation (space-like dislocation). We also consider the topological defect with an internal magnetic field. Later, we investigate the interaction of a scalar field with a Coulomb-type potential plus another Coulomb-type potential (gauge potential), a uniform magnetic field, the Klein-Gordon oscillator and a linear scalar potential in this topological defect spacetime. Then, by searching for analytical solutions to the Klein-Gordon equation in the spacetime with a screw dislocation, we obtain analogues effects of the Aharonov-Bohm effect for bound states.

References

  1. 1.
    W. Greiner, Relativistic Quantum Mechanics: Wave Equations, 3rd edition (Springer, Berlin, 2000)Google Scholar
  2. 2.
    C.L. Chrichfield, Phys. Rev. D 12, 923 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Chrichfield, J. Math. Phys. 17, 261 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure (Les Editions de Physique, Les Ulis, France, 1988)Google Scholar
  6. 6.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Heterostructures (Academic, New York, 1993)Google Scholar
  7. 7.
    O. Von Roos, Phys. Rev. B 27, 7547 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Cavalcanti de Oliveira, E.R. Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    T.W.B. Kibble, J. Phys. A 9, 1387 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    M. Peshkin, A. Tonomura, The Aharonov-Bohm Effect in Lecture Notes in Physics, Vol. 340 (Springer-Verlag, Berlin, 1989)Google Scholar
  11. 11.
    V.B. Bezerra, J. Math. Phys. 38, 2553 (1997)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G.A. Marques, V.B. Bezerra. C. Furtado, F. Moraes, Int. J. Mod. Phys. A 20, 6051 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    J. Carvalho, C. Furtado, F. Moraes, Phys. Rev. A 84, 032109 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    C. Furtado, F. Moraes, V.B. Bezerra, Phys. Rev. D 59, 107504 (1999)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.S. Cunha, C.R. Muniz, H.R. Christiansen, V.B. Bezerra, Eur. Phys. J. C 76, 512 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    R.L.L. Vitória, K. Bakke, Gen. Relativ. Gravit. 48, 161 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    R.L.L. Vitória, K. Bakke, Int. J. Mod. Phys. D 27, 1850005 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    R.L.L. Vitória, K. Bakke, Eur. Phys. J. C 78, 175 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    J. Carvalho, A.M. de M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    E. Cavalcante, J. Carvalho, C. Furtado, Eur. Phys. J. Plus 131, 288 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Spinelly, E.R. Bezerra de Mello, V.B. Bezerra, Class. Quantum Grav. 18, 1555 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C.A. de Lima Ribeiro, A.M. de M. Carvalho, C. Furtado, Prog. Theor. Phys. 124, 547 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E.R. Bezerra de Mello, C. Furtado, Phys. Rev. D 56, 1345 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    H. Mota, Mod. Phys. Lett. A 31, 1650074 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Puntigam, H.H. Soleng, Class. Quantum Grav. 14, 1129 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    M.O. Katanaev, I.V. Volovich, Ann. Phys. (NY) 216, 1 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    H. Kleinert, Gauge fields in condensed matter, Vol. 2 (World Scientific, Singapore, 1989)Google Scholar
  29. 29.
    S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. (NY) 353, 282 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A. Kratzer, Z. Phys. 3, 289 (1920)ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Setare, E. Karimi, Phys. Scr. 75, 90 (2007)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    G. de A. Marques, V.B. Bezerra, Class. Quantum Grav. 19, 985 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    A.D. Alhaidari, Phys. Lett. A 322, 72 (2004)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Yu, S.-H. Dong, Phys. Lett. A 325, 194 (2004)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Asada, T. Futamase, Phys. Rev. D 56, R6062 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    G. de A. Marques, C. Furtado, V.B. Bezerra, F. Moraes, J. Phys. A 34, 5945 (2001)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, sixth edition (Elsevier Academic Press, New York, 2005)Google Scholar
  39. 39.
    M. Abramowitz, I.A. Stegum, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1965)Google Scholar
  40. 40.
    A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)Google Scholar
  41. 41.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, the nonrelativistic theory, 3rd ed. (Pergamon, Oxford, 1977)Google Scholar
  42. 42.
    D.J. Griffiths, Introduction to quantum mechanics, second edition (Prentice Hall, 2004)Google Scholar
  43. 43.
    S. Bruce, P. Minning, Nuovo Cimento A 106, 711 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    V.V. Dvoeglazov, Nuovo Cimento A 107, 1413 (1994)ADSGoogle Scholar
  45. 45.
    N.A. Rao, B.A. Kagali, Phys. Scr. 77, 015003 (2008)CrossRefGoogle Scholar
  46. 46.
    A. Boumali, A. Hafdallah, A. Toumi, Phys. Scr. 84, 037001 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    B. Mirza, M. Mohadesi, Commun. Theor. Phys. 42, 664 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    B. Mirza, R. Narimani, S. Zare, Commun. Theor. Phys. 55, 405 (2011)CrossRefGoogle Scholar
  49. 49.
    M.-L. Liang, R.-L. Yang, Int. J. Mod. Phys. A 27, 1250047 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Xiao, Z. Long, S. Cai, Int. J. Theor. Phys. 50, 3105 (2011)CrossRefGoogle Scholar
  51. 51.
    J.-Y. Cheng, Int. J. Theor. Phys. 50, 228 (2011)CrossRefGoogle Scholar
  52. 52.
    K. Bakke, C. Furtado, Ann. Phys. (NY) 355, 48 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    J. Carvalho, A.M. de M. Carvalho, E. Cavalcante, C. Furtado, Eur. Phys. J. C 76, 365 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    R.L.L. Vitória, C. Furtado, K. Bakke, Ann. Phys. (NY) 370, 128 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    R.L.L. Vitória, K. Bakke, Eur. Phys. J. Plus 131, 36 (2016)CrossRefGoogle Scholar
  56. 56.
    L.C.N. Santosa, C.C. Barros Jr., Eur. Phys. J. C 78, 13 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    B.-Q. Wang, Z.-W. Long, C.-Y. Long, S.-R. Wu, Mod. Phys. Lett. A 33, 1850025 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    A. Boumali, M. Labidi, Mod. Phys. Lett. A 33, 1850033 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations