Advertisement

Symmetries and fundamental interactions: Precision experiments at low energies

  • K. KirchEmail author
Review
  • 44 Downloads
Part of the following topical collections:
  1. Focus Point on Rewriting Nuclear Physics Textbooks: Basic Nuclear Interactions and Their Link to Nuclear Processes in the Cosmos and on Earth

Abstract.

Here is a short paper on precision physcis experiments at low energies. Such experiments use methods of nuclear, particle and atomic physics providing some of the most sensitive tests of our present best theories of nature. Hoping that this is most accessible, I have chosen an illustrative approach, giving 6 examples of such experiments with neutrons and muons addressing various aspects of the known fundamental interactions and open issues. The list of references puts emphasis for some examples more on the historic, original publications, for others on the latest results and sometimes just refers to review articles. It is not aiming at the most comprehensive picture but at attracting the reader’s interest and providing starting points for further studies.

References

  1. 1.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Garwin, L.M. Lederman, M. Weinrich, Phys. Rev. 105, 1415 (1957)ADSCrossRefGoogle Scholar
  4. 4.
    J.I. Friedman, V.L. Telegdi, Phys. Rev. 105, 1681 (1957)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. Barkov, M.S. Zolotorev, JETP Lett. 27, 357 (1978)ADSGoogle Scholar
  6. 6.
    B.M. Roberts, V.A. Dzuba, V.V. Flambaum, Annu. Rev. Nucl. Part. Sci. 65, 63 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    CMS Collaboration, Phys. Lett. B 716, 30 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    HFLAV Collaboration (Y. Amhis et al.), Eur. Phys. J. C 77, 895 (2017)CrossRefGoogle Scholar
  12. 12.
    G. Lüders, Ann. Phys. 2, 1 (1957)ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967)Google Scholar
  14. 14.
    D.E. Morrissey, M.J. Ramsey-Musolf, New. J. Phys. 14, 125003 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    P.A.R. Ade Planck et al., Astron. Astrophys. 571, A16 (2014) arXiv:1303.5076CrossRefGoogle Scholar
  16. 16.
    M. Trodden, Rev. Mod. Phys. 71, 1463 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ellis, N.E. Mavromatos, S. Sarkar, Phys. Lett. B 725, 407 (2013)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R.D. Peccei, The Strong CP Problem and Axions, in Axions: Theory, Cosmology, and Experimental Searches, edited by M. Kuster, G. Raffelt, B. Beltran, Lecture Notes in Physics, Vol. 741 (Springer, 2006) 3Google Scholar
  19. 19.
    B.-L. Young, Front. Phys. 12, 121201 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Milgrom, Astrophys. J. 270, 365 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    A. Goobar, B. Leibundgut, Annu. Rev. Nucl. Part. Sci. 61, 251 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J.T. Nielsen, A. Guffanti, S. Sarkar, Sci. Rep. 6, 35596 (2016) arXiv:1506.01354ADSCrossRefGoogle Scholar
  23. 23.
    G. Börner, Phys. i.u.Z. 36, 168 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    W. Joho, IEEE Trans. Nucl. Sci. NS22, 1397 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    P.A. Schmelzbach et al., IEEE Part. Acc. Conf. (PAC) 1-4, 178 (2005)Google Scholar
  27. 27.
    F. Berg et al., Phys. Rev. Acc. Beams 19, 024701 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    T. Prokscha et al., Nucl. Instrum. Methods A 595, 317 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P.R. Kettle, HiMB -- Towards a new High-intensity Muon Beam, in Future Muon Sources Workshop (University of Huddersfield UK, 2015)Google Scholar
  30. 30.
    D. Taqqu, Phys. Rev. Lett. 97, 194801 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Yu Bao et al., Phys. Rev. Lett. 112, 224801 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    D. Taqqu, Phys. Proc. 17, 216 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    A. Antognini et al., Atoms 6, 17 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    A. Antognini et al., Science 339, 417 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    K. Kirch, B. Lauss, P. Schmidt-Wellenburg, G. Zsigmond, Nucl. Phys. News 20, 17 (2010)CrossRefGoogle Scholar
  36. 36.
    T.P. Gorringe, D.W. Hertzog, Prog. Part. Nucl. Phys. 84, 73 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    R. Golub, D.J. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons (Adam Hilger, Bristol, Philadelphia, New York, 1991)Google Scholar
  38. 38.
    C.D. Anderson, S.H. Neddermeyer, Phys. Rev. 50, 263 (1936)ADSCrossRefGoogle Scholar
  39. 39.
    P. Kunze, Z. Phys. 83, 1 (1933)ADSCrossRefGoogle Scholar
  40. 40.
    V. Tishchenko et al., Phys. Rev. D 87, 052003 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    N. Danneberg et al., Phys. Rev. Lett. 94, 021802 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    T. Aoyama, T. Kinoshita, M. Nio, Phys. Rev. D 97, 036001 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    H.M. Foley, P. Kusch, Phys. Rev. 73, 412 (1948)ADSCrossRefGoogle Scholar
  45. 45.
    W. Lamb, R. Retherford, Phys. Rev. 72, 241 (1947)ADSCrossRefGoogle Scholar
  46. 46.
    S. Sturm et al., Nature 506, 467 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    C.G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    A. Antognini et al., EPJ Web of Conferences 113, 01006 (2016)CrossRefGoogle Scholar
  49. 49.
    R. Pohl et al., Science 353, 669 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    A.M. Baldini et al., Eur. Phys. J. C 76, 434 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    G.M. Pruna, A. Signer, J. High Energy Phys. 10, 014 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    A.M. Baldini et al., Eur. Phys. J. C 78, 380 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    A. Blondel, arXiv:1301.6113Google Scholar
  54. 54.
    I.B. Khriplovich, S.K. Lamoreaux, CP Violation Without Strangeness (Springer, Berlin, 1997)Google Scholar
  55. 55.
    E.M. Purcell, N.F. Ramsey, Phys. Rev. 78, 807 (1950)ADSCrossRefGoogle Scholar
  56. 56.
    J.H. Smith, E.M. Purcell, N.F. Ramsey, Phys. Rev. 108, 120 (1957)ADSCrossRefGoogle Scholar
  57. 57.
    N.F. Ramsey, Phys. Rev. 109, 225 (1958)ADSCrossRefGoogle Scholar
  58. 58.
    C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)ADSCrossRefGoogle Scholar
  60. 60.
    J.M. Pendlebury et al., Phys. Rev. D 92, 092003 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    D.J.E. Marsh, Phys. Rep. 643, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    P.W. Graham, S. Rajendran, Phys. Rev. D 88, 035023 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    Y.V. Stadnik, V.V. Flambaum, Phys. Rev. D 89, 043522 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    C. Abel et al., Phys. Rev. X 7, 041034 (2017)Google Scholar
  65. 65.
    S. Schlamminger et al., Phys. Rev. Lett. 100, 041101 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    M.M. Nieto, T. Goldman, Phys. Rep. 205, 221 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    S. Ulmer et al., Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    S.G. Karshenboim, arXiv:0811.1009 (2013)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Paul Scherrer InstituteViligenSwitzerland
  2. 2.ETH ZurichInstitute for Particle Physics and AstrophysicsZurichSwitzerland

Personalised recommendations