Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation

  • Wen-Rong SunEmail author
  • Lei Wang
Regular Article


Using the \(4\times 4\) Lax pair and Darboux-dressing transformation, we study the existence and properties of vector rogue waves of the higher-order matrix nonlinear Schrödinger equation. Our analytical results show at least three important features that are associated to rogue-wave formations and dynamics. Firstly, we show that vector rogue waves can be converted to vector solitons on mixed backgrounds. To be specific, one component of the vector soliton propagates on the constant background, while the other one propagates on the zero background. Such novel characteristics (vector solitons on mixed backgrounds) arise from higher-order effects. Secondly, the link between baseband modulation instability and rogue waves is displayed by showing the gain function. Thirdly, with the continuous-wave and mixed backgrounds, we produce a family of rational solutions for the purpose of describing the rogue waves. Bright-bright and dark-bright rogue waves with single hump and double humps are presented. We observe that the dark rogue wave could turn into the double-hump bright rogue wave. It is found that the bright rogue wave on the continuous-wave background can split up, giving birth to multiple rogue waves, while two humps of bright rogue wave on the zero background merge, giving birth to a bright rogue wave with one hump.


  1. 1.
    J. Ieda, T. Miyakawa, M. Wadati, Phys. Rev. Lett. 93, 194102 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    M. Uchiyama, J. Ieda, M. Wadati, J. Phys. Soc. Jpn. 75, 064002 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    W.R. Sun, L. Wang, Proc. R. Soc. A 474, 20170276 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    W.R. Sun, B. Tian, Y. Jiang, H.L. Zhen, Phys. Rev. E 91, 023205 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    X. Lü, B. Tian, Phys. Rev. E 85, 026117 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Q.H. Park, H.J. Shin, Phys. Rev. E 59, 2373 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H.Q. Zhang, J. Li, T. Xu, Y.X. Zhang, W. Hu, B. Tian, Phys. Scr. 76, 452 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 91, 032928 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Chowdury, A. Ankiewicz, N. Akhmediev, Proc. R. Soc. A 471, 20150130 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Wazwaz, Nonlinear Dyn. 91, 877 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    K. Porsezian, M. Daniel, M. Lakshmanan, J. Math. Phys. 33, 1807 (1992)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Porsezian, Phys. Rev. E 55, 3785 (1997)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.H. Wang, K. Porsezian, J.S. He, Phys. Rev. E 87, 053202 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.R. Osborne, Nonlinear Ocean Waves (Academic Press, New York, 2009)Google Scholar
  16. 16.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, S. Wabnitz, Phys. Rev. Lett. 113, 034101 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Dudley, F. Dias, M. Erkintalo, G. Genty, Nat. Photon. 8, 755 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C. Liu, Z.Y. Yang, L.C. Zhao, L. Duan, G. Yang, W.L. Yang, Phys. Rev. E 94, 042221 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Liu, R. Yang, Z.Y. Yang, W.L. Yang, Chaos 27, 083120 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Chen, L.Y. Song, Phys. Rev. E 87, 032910 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, Phys. Rev. Lett. 111, 114101 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    L. Wang, D.Y. Jiang, F.H. Qi, Y.Y. Shi, Commun. Nonlinear Sci. Numer. Simul. 42, 502 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Wang, C. Liu, X. Wu, X. Wang, W.R. Sun, Nonlinear Dyn. 94, 977 (2018)CrossRefGoogle Scholar
  25. 25.
    J.H. Zhang, L. Wang, C. Liu, Proc. R. Soc. A 473, 20160681 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    L. Wang, X. Wu, H.Y. Zhang, Phys. Lett. A 382, 2650 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Li, L. Wang, L.Q. Kong, X. Wang, Z.Y. Xie, Appl. Math. Lett. 85, 110 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Guo, Y.F. Liu, H.Q. Hao, F.H. Qi, Nonlinear Dyn. 80, 1221 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Liu, W. Yu, C. Yang, M. Liu, Y. Zhang, M. Lei, Nonlinear Dyn. 89, 2933 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Lü, Nonlinear Dyn. 81, 239 (2015)CrossRefGoogle Scholar
  31. 31.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, Nat. Phys. 6, 790 (2010)CrossRefGoogle Scholar
  33. 33.
    D.H. Peregrine, J. Aust. Math. Soc. B 25, 16 (1983)MathSciNetCrossRefGoogle Scholar
  34. 34.
    T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)ADSCrossRefGoogle Scholar
  35. 35.
    T.B. Benjamin, Proc. R. Soc. A 299, 59 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    V.E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968)ADSCrossRefGoogle Scholar
  37. 37.
    S. Chen, Y. Ye, J.M. Soto-Crespo, P. Grelu, F. Baronio, Phys. Rev. Lett. 121, 104101 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Sci. Rep. 6, 20785 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, B. Kibler, Phys. Rev. A 97, 013852 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    S. Chen, Ph. Grelu, J.M. Soto-Crespo, Phys. Rev. E 89, 011201 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    S. Chen, J.M. Soto-Crespo, Ph. Grelu, Phys. Rev. E 90, 033203 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    S. Chen, F. Baronio, J.M. Soto-Crespo, Ph. Grelu, M. Conforti, S. Wabnitz, Phys. Rev. A 92, 033847 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    S. Chen, J.M. Soto-Crespo, Ph. Grelu, Opt. Express 23, 349 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    S. Chen, X.M. Cai, Ph. Grelu, J.M. Soto-Crespo, S. Wabnitz, F. Baronio, Opt. Express 24, 5886 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. Chen, D. Mihalache, J. Phys. A 48, 215202 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S. Chen, F. Baronio, J.M. Soto-Crespo, P. Grelu, D. Mihalache, J. Phys. A 50, 463001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    N. Akhmediev, B. Kibler, F. Baronio et al., J. Opt. 18, 063001 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    A. Degasperis, S. Lombardo, Phys. Rev. E 88, 052914 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    A. Degasperis, S. Lombardo, J. Phys. A 40, 961 (2007)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Degasperis, S. Lombardo, J. Phys. A 42, 385206 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Y. Kivshar, G. Agrawal, Optical solitons: from fibers to photonic crystals (Academic Press, San Diego, CA, 2003)Google Scholar
  52. 52.
    T. Taniuti, H. Washimi, Phys. Rev. Lett. 21, 209 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    L. Salasnich, A. Parola, L Reatto, Phys. Rev. Lett. 91, 080405 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    F. Baronio, S. Chen, P. Grelu, S. Wabnitz, M. Conforti, Phys. Rev. A 91, 033804 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    B. Frisquet, B. Kibler, J. Fatome, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Phys. Rev. A 92, 053854 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    L. Wang, J. Zhang et al., Phys. Rev. E 93, 012214 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Mathematics and PhysicsNorth China Electric Power UniversityBeijingChina

Personalised recommendations