Advertisement

Mixed ab initio and semiempirical study of hydrogen-terminated finite germanium nanowires

  • Shanawer Niaz
  • Oğuz Gülseren
  • Muhammad Aslam Khan
  • Irfan Ullah
Regular Article
  • 16 Downloads

Abstract.

We present a mixed ab initio and semiempirical method for the cohesive energy and electronic gap calculations of hydrogen passivated tetrahedral and clathrate germanium nanowires (∼ 1850 atoms) with acceptable accuracy, comparable to density functional theory results, and with a significantly lower computational cost. First, we find that the PM6 semiempirical method produce the most accurate geometries when compared with the DFT results; whereas other semiempirical methods such as AM1, PM3 and PM7 clearly underestimate (or overestimate). Second, we implement the DFT@PM6 mixed scheme for cohesive/binding energy and electronic gap calculations which shows promising results compared with reference values of DFT. However, the bulk energy gap and binding energy values from the quantum confinement fitting procedure slightly underestimate the results which can be easily overcome using suitable functional and basis set/ECP. Also, a comparison with previous work clearly shows that the calculated electronic gap for bulk germanium is extremely sensitive to the choice of framework. Further development in this research work is progressing.

References

  1. 1.
    Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K. Kim, C.M. Lieber, Science 294, 1313 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    B. Polyakov, B. Daly, J. Prikulis, V. Lisauskas, B. Vengalis, M.A. Morris, J.D. Holmes, D. Erts, Adv. Mater. 18, 1812 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Wu, P.D. Yang, Chem. Mater. 12, 605 (2000)CrossRefGoogle Scholar
  6. 6.
    B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia, M. Meyyappan, J. Clust. Sci. 17, 579 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Patibandla, S. Pramanik, S. Bandyopadhyaya, G.C. Tepper, J. Appl. Phys. 100, 044303 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C.K. Chan, X.F. Zhang, Y. Cui, Nano Lett. 8, 307 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y.H. Ahn, J. Park, Appl. Phys. Lett. 91, 162102 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Nat. Mater. 6, 379 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M. Amato, S. Ossicini, R. Rurali, Nano Lett. 11, 594 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D. Wang, Y. Chang, Z. Liu, H. Dai, J. Am. Chem. Soc. 127, 11871 (2005)CrossRefGoogle Scholar
  14. 14.
    P. Nguyen, H.T. Ng, M. Meyyappan, Adv. Mater. 17, 549 (2005)CrossRefGoogle Scholar
  15. 15.
    D. Wang, Q. Wang, A. Javey, R. Tu, H.J. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 4176 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    S. Niaz, S. Slimani, M.A. Badar, G. Subhan, M.A. Khan, Sensors Transducers 189, 162 (2015)Google Scholar
  18. 18.
    A. Nduwimana, X.Q. Wang, J. Phys. Chem. C 114, 9702 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Adhikari, P.C. McIntyre, S.Y. Sun, P. Pianetta, C.E.D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    G. Collins, P. Fleming, S. Barth, C. O’Dwyer, J.J. Boland, M.A. Morris, J.D. Holmes, Chem. Mater. 22, 6370 (2010)CrossRefGoogle Scholar
  21. 21.
    D.W. Wang, Y.L. Chang, Z. Liu, H.J. Dai, J. Am. Chem. Soc. 127, 11871 (2005)CrossRefGoogle Scholar
  22. 22.
    J.T. Arantes, A. Fazzio, Nanotechnology 18, 295706 (2007)CrossRefGoogle Scholar
  23. 23.
    S.P. Beckman, J. Han, J.R. Chelikowsky, Phys. Rev. B 74, 165314 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    M. Bescond, N. Cavassilas, K. Nehari, M. Lannoo, J. Comput. Electron. 6, 341 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Harris, E.P. O’Reilly, Physica E 32, 341 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    D. Medaboina, V. Gade, S.K.R. Patil, S.V. Khare, Phys. Rev. B 76, 205327 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    M. Jing, M. Ni, W. Song, J. Lu, Z. Gao, L. Lai, W.N. Mei, D. Yu, H. Ye, L. Wang, J. Phys. Chem. B 110, 18332 (2006)CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    G. Igel-Mann, H. Stoll, H. Preuss, Mol. Phys. 65, 1321 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, (1990). Gaussian 09 (Gaussian. Inc., Wallingford, CT, USA, 2009) 542Google Scholar
  32. 32.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)CrossRefGoogle Scholar
  33. 33.
    M.J.S. Dewar, J. Caoxian, Organometallics 8, 1544 (1989)CrossRefGoogle Scholar
  34. 34.
    M.J.S. Dewar, J. Comput. Chem. 10, 221 (1989)CrossRefGoogle Scholar
  35. 35.
    M.J.S. Dewar, J. Mol. Modeling 13, 1173 (2007)CrossRefGoogle Scholar
  36. 36.
    J.J.P. Stewart, J. Mol. Modeling 19, 1 (2013)CrossRefGoogle Scholar
  37. 37.
    MOPAC2012, J.J.P. Stewart, Stewart Computational Chemistry, http://OpenMOPAC.net (Colorado Springs, CO, USA, 2012)
  38. 38.
    MOPAC2016, J.J.P. Stewart, Stewart Computational Chemistry, http://OpenMOPAC.net (Colorado Springs, CO, USA, 2016)
  39. 39.
    L. Tian, F. Chen, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  40. 40.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Niaz, A.D. Zdetsis, J. Phys. Chem. C 120, 11288 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Niaz, E.N. Koukaras, N.P. Katsougrakis, T.G. Kourelis, D.K. Kougias, A.D. Zdetsis, Microelectron. Eng. 112, 231 (2013)CrossRefGoogle Scholar
  43. 43.
    C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York, 1986)Google Scholar
  44. 44.
    S. Niaz, A.D. Zdetsis, M.A. Badar, S. Hussain, I. Sadiq, M.A. Khan, J. Chem. Soc. Pak. 38, 207 (2016)Google Scholar
  45. 45.
    M. Bruno, M. Palummo, S. Ossicini, R. Del Sole, Surf. Sci. 601, 2707 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    D. Medaboina, V. Gade, S.K.R. Patil, S.V. Khare, Phys. Rev. B 76, 205327 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    A.N. Kholod, V.L. Shaposhnikov, N. Sobolev, V.E. Borisenko, F.A. D’Avitaya, S. Ossicini, Phys. Rev. B 70, 035317 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Hoboken, NJ, 2005)Google Scholar
  49. 49.
    E.N. Koukaras, S. Niaz, D.A. Zdetsis, A.D. Zdetsis, Microelectron. Eng. 90, 88 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shanawer Niaz
    • 1
    • 2
  • Oğuz Gülseren
    • 2
  • Muhammad Aslam Khan
    • 3
  • Irfan Ullah
    • 4
  1. 1.Department of PhysicsUniversity of SargodhaBhakkarPakistan
  2. 2.Department of PhysicsBilkent UniversityAnkaraTurkey
  3. 3.Department of PhysicsKhawaja Fareed University of Engineering and Information TechnologyRahim Yar KhanPakistan
  4. 4.Department of ChemistryUniversity of SargodhaBhakkarPakistan

Personalised recommendations