Advertisement

Effect of horizontal and vertical elliptic baffles inside an enclosure on the mixed convection of a MWCNTs-water nanofluid and its entropy generation

  • Alireza Aghaei
  • Ghanbar Ali Sheikhzadeh
  • Marjan Goodarzi
  • Hossein Hasani
  • Hadi Damirchi
  • Masoud Afrand
Regular Article
  • 8 Downloads

Abstract.

In the present study, the effect of horizontal and vertical elliptic baffles on the flow, heat transfer and entropy generation of a MWCNTs-water nanofluid was investigated. Experimental data were used to calculate the viscosity and thermal conductivity of the nanofluid at different temperatures and volume fractions. A square enclosure with a central elliptic baffle was numerically studied. The elliptic baffle was located in two horizontal and vertical positions. The hot baffle was at temperature Th and the walls of the enclosure, except for the lower insulated wall, were at temperature Tc. A FORTRAN code based on the finite volume method and SIMPLER algorithm was used to analyze mixed convection. Nanoparticle volume fractions of 0, 0.002, 0.004, 0.008, and 0.01 at Richardson numbers of 0.01, 0.1, 1 and 100 at a constant Grashof number of 104 were studied. Horizontal placement of thermal baffle led to a higher heat transfer rate, which is more favorable in terms of heat exchange. The entropy generation values in the horizontal position were higher than the vertical position. The highest mean Nusselt number and total entropy generation were 7.9 and 20.4, respectively. For the horizontal placement, the highest mean Nusselt number happens at a volume fraction of 0.01 and a Richardson number of 0.01. Studies often focus on higher heat transfer rates. However, a horizontal baffle is more favorable than the vertical position considering that the greatest difference in the total entropy generation is about 8%.

References

  1. 1.
    S.M.A.N.R. Abadi, A. Jafari, Heat Transf. Res. 43, 259 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Afrand, Appl. Therm. Eng. 110, 1111 (2017)CrossRefGoogle Scholar
  3. 3.
    E. Dardan, M. Afrand, A.H. Meghdadi Isfahani, Appl. Therm. Eng. 109, 524 (2016)CrossRefGoogle Scholar
  4. 4.
    S.M.S. Murshed, P. Estellé, Renew. Sustain. Energy Rev. 76, 1134 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Zyła, J. Fal, P. Estellé, Int. J. Heat Mass Transfer 113, 1189 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Afrand, E. Abedini, H. Teimouri, Physica E 87, 273 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    E. Shahsavani, M. Afrand, R. Kalbasi, Appl. Therm. Eng. 129, 1573 (2018)CrossRefGoogle Scholar
  8. 8.
    K. Sepyani, M. Afrand, M. Hemmat Esfe, J. Mol. Liq. 236, 198 (2017)CrossRefGoogle Scholar
  9. 9.
    P. Estelle, O. Mahian, T. Mare, H.F. Oztop, J. Therm. Anal. Calorim. 128, 1765 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Talebi, A.H. Mahmoudi, M. Shahi, Int. Commun. Heat Mass Transf. 37, 79 (2010)CrossRefGoogle Scholar
  11. 11.
    I. Pishkar, B. Ghasemi, Int. J. Therm. Sci. 59, 141 (2012)CrossRefGoogle Scholar
  12. 12.
    A.J. Chamkha, E. Abu-Nada, Eur. J. Mech.-B/Fluids 36, 82 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A.A. Arani, S.M. Sebdani, M. Mahmoodi, A. Ardeshiri, M. Aliakbari, Superlattices Microstruct. 51, 893 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Muthtamilselvan, D.H. Doh, Appl. Math. Modell. 38, 3164 (2014)CrossRefGoogle Scholar
  15. 15.
    A.S. Kherbeet, H. Mohammed, K. Munisamy, B. Salman, Int. J. Heat Mass Transfer 68, 554 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Abu-Mulaweh, Int. J. Therm. Sci. 42, 897 (2003)CrossRefGoogle Scholar
  17. 17.
    F. Moukalled, S. Acharya, J. Thermophys. Heat Transf. 10, 524 (1996)CrossRefGoogle Scholar
  18. 18.
    M. Sheremet, D. Cimpean, I. Pop, Appl. Therm. Eng. 113, 413 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Armaghani, A. Kasaeipoor, N. Alavi, M. Rashidi, J. Mol. Liq. 223, 243 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 70, 168 (2017)CrossRefGoogle Scholar
  21. 21.
    M.N. Labib, M.J. Nine, H. Afrianto, H. Chung, H. Jeong, Int. J. Therm. Sci. 71, 163 (2013)CrossRefGoogle Scholar
  22. 22.
    W.S. Han, S.H. Rhi, Therm. Sci. 15, 195 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Karbasifar, M. Akbari, D. Toghraie, Int. J. Heat Mass Transfer 116, 1237 (2018)CrossRefGoogle Scholar
  24. 24.
    V.M. Job Sreedhara, R. Gunakala, Int. J. Heat Mass Transfer 120, 970 (2018)CrossRefGoogle Scholar
  25. 25.
    M.H. Esfe, A.A.A. Arani, W.-M. Yan, A. Aghaei, Int. J. Mech. Sci. 121, 21 (2017)CrossRefGoogle Scholar
  26. 26.
    M.H. Esfe, S. Saedodin, O. Mahian, S. Wongwises, Int. Commun. Heat Mass Transf. 58, 176 (2014)CrossRefGoogle Scholar
  27. 27.
    A.A.A.A. Alrashed, O.A. Akbari, A. Heydari, D. Toghraie, M. Zarringhalam, G.A.S. Shabani, A.R. Seifi, M. Goodarzi, Physica B 537, 176 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Shamshirband, A. Malvandi, A. Karimipour, M. Goodarzi, M. Afrand, D. Petković, M. Dahari, N. Mahmoodian, Powder Technol. 284, 336 (2015)CrossRefGoogle Scholar
  29. 29.
    E. Khodabandeh, M.R. Safaei, S. Akbari, O.A. Akbari, A.A.A.A. Alrashed, Renew. Energy 122, 1 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alireza Aghaei
    • 1
  • Ghanbar Ali Sheikhzadeh
    • 2
  • Marjan Goodarzi
    • 3
  • Hossein Hasani
    • 2
  • Hadi Damirchi
    • 2
  • Masoud Afrand
    • 4
  1. 1.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Department of Mechanical EngineeringUniversity of KashanKashanIran
  3. 3.Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations