Advertisement

Entropy generation analysis as design criteria in dam-break flows for non-Newtonian fluids

  • Esmail Lakzian
  • Ayda Estiri
Regular Article

Abstract.

In the present study, a novel equation is presented for entropy generation (EG) in dam-break flows of Herschel-Bulkley fluids. The Herschel-Bulkley model is an idealized model of viscoplastic behavior. The dam-break phenomena can cause floods and widespread destruction in the path of the flow. Therefore, finding a measure for destruction analysis in downstream of the dam is important. Therefore, the EG is introduced as a criterion of destruction analysis in non-Newtonian dam-break flows. The Open-FOAM software is employed and simulations are done by the modified VOF method. Results are compared with experimental data, and a good agreement is achieved. The EG analysis of the Herschel-Bulkley fluid is presented for the first time. It is computed for different initial height (H0), and the results show that the enhancement of H0 causes the increment of EG. And, also, for an increment of EG, different shapes of bump are simulated and the geometry and bump distance from the dam are optimized. As a result, the triangle bump with \( r_{hw}=0.4\), \( r_{Dw}=0.2\), and \( r_{dw}=0.2\) has the best performance in increasing the EG. Focusing on the destruction of the available work in the dam-break flows of Herschel-Bulkley fluids is important and useful for designing dams and structures in the downstream of dams.

References

  1. 1.
    C. Ancey, N.J. Balmforth, I. Frigaard, Visco-plastic Fluids: From Theory to Application (Elsevier, 2009)Google Scholar
  2. 2.
    P. Saramito, J. Non-Newtonian Fluid Mech. 158, 154 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Tripathi, A. Yadav, O.A. Bég, Eur. Phys. J. Plus 132, 173 (2017)CrossRefGoogle Scholar
  4. 4.
    R.B. Minussi, G.D. Maciel, J. Braz. Soc. Mech. Sci. Eng. 34, 167 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Scholle, A. Haas, N. Aksel, M.C. Wilson, H.M. Thompson, P.H. Gaskell, Phys. Fluids 20, 123101 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A. Shakibaeinia, Y.C. Jin, Adv. Water Resour. 34, 794 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    S. Soares-Frazão, J. Hydraul. Res. 45, 19 (2007)CrossRefGoogle Scholar
  8. 8.
    J.G. Zhou, D.M. Causon, C.G. Mingham, D.M. Ingram, J. Hydraul. Eng. 130, 332 (2004)CrossRefGoogle Scholar
  9. 9.
    G. Matson, A. Hogg, J. Non-Newtonian Fluid Mech. 142, 79 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Longo, L. Chiapponi, V. Di Federico, J. Non-Newtonian Fluid Mech. 235, 95 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Cochard, C. Ancey, J. Non-Newtonian Fluid Mech. 158, 73 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Ancey, N. Andreini, G. Epely-Chauvin, Adv. Water Resour. 48, 79 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C. Ancey, S. Cochard, J. Non-Newtonian Fluid Mech. 158, 18 (2009)CrossRefGoogle Scholar
  14. 14.
    N.J. Balmforth, R.V. Craster, A.C. Rust, R. Sassi, J. Non-Newtonian Fluid Mech. 139, 103 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Balmforth, J. Liu, J. Fluid Mech. 519, 33 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Saramito, A. Wachs, Rheol. Acta 56, 211 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, N. Balmforth, S. Hormozi, D. Hewitt, J. Non-Newtonian Fluid Mech. 238, 65 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Shao, E.Y. Lo, Adv. Water Resour. 26, 787 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Labbé, D. Laigle, Comput. Methods Multiphase Flow VII 79, 399 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Shao, E.Y. Lo, Adv. Water Resour. 26, 787 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    E.H. Zubeldia, G. Fourtakas, B.D. Rogers, M.M. Farias, Adv. Water Resour. 117, 98 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    G. Fourtakas, B.D. Rogers, Adv. Water Resour. 92, 186 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Marsooli, Reza, Wu Weiming, Adv. Water Resour. 70, 104 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Jabbari, R. Bulatova, J.H. Hattel, C.R. Bahl, Appl. Math. Modell. 38, 3222 (2014)CrossRefGoogle Scholar
  25. 25.
    C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    C. Mokrani, S. Abadie, J. Fluids Struct. 62, 86 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    M. Furuya, Y. Oka, M. Satoh, S. Lo, T. Arai, Heat Transf. XIII 83, 363 (2014)Google Scholar
  28. 28.
    S.S. Deshpande, L. Anumolu, M.F. Trujillo, Comput. Sci. Discov. 5, 014016 (2012)CrossRefGoogle Scholar
  29. 29.
    O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, University of London (1997)Google Scholar
  30. 30.
    O. Ubbink, R. Issa, J. Comput. Phys. 153, 26 (1999)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Weller, Derivation, modelling and solution of the conditionally averaged two-phase flow equations, Technical Report No TR/HGW (Nabla Ltd., 2002)Google Scholar
  32. 32.
    A. Bejan, J. Heat Transf. 101, 718 (1979)CrossRefGoogle Scholar
  33. 33.
    B.S. Yilbas, M. Yürüsoy, M. Pakdemirli, Entropy 6, 304 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Y.-M. Hung, Int. Commun. Heat Mass Transf. 35, 1125 (2008)CrossRefGoogle Scholar
  35. 35.
    F.A. Soomro, Z.H. Khan, Q. Zhang, Eur. Phys. J. Plus 132, 412 (2017)CrossRefGoogle Scholar
  36. 36.
    M.I. Khan, T.A. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, Eur. Phys. J. Plus 133, 329 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Mirzaee, E. Lakzian, Adv. Powder Technol. 28, 3172 (2017)CrossRefGoogle Scholar
  38. 38.
    E. Lakzian, A. Masjedi, Int. J. Exergy 14, 22 (2014)CrossRefGoogle Scholar
  39. 39.
    E. Lakzian, A. Shabani, Int. J. Exergy 4, 383 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Energy 147, 701 (2018)CrossRefGoogle Scholar
  41. 41.
    A. Lotfi, E. Lakzian, Eur. Phys. J. Plus 131, 123 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Soltanmohammadi, E. Lakzian, Meccanica 51, 1713 (2016)CrossRefGoogle Scholar
  43. 43.
    E. Lakzian, R. Soltanmohammadi, M. Nazeryan, Sci. Iran. B 23, 2673 (2016)Google Scholar
  44. 44.
    R. Nazeryan, E. Lakzian, Energy 143, 385 (2018)CrossRefGoogle Scholar
  45. 45.
    Z.A. Raizah, A.M. Aly, S.E. Ahmed, Int. J. Mech. Sci. 140, 376 (2018)CrossRefGoogle Scholar
  46. 46.
    E. Lakzian, M. Hajian, A. Farahmand, Meccanica (2017),  https://doi.org/10.1007/s11012-017-0706-1
  47. 47.
    H. Saghi, E. Lakzian, Energy 128, 564 (2017)CrossRefGoogle Scholar
  48. 48.
    H. Saghi, Physica A 491, 972 (2018)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations