Advertisement

Maneuvering periods of 2D quantum walks with the coin operator

  • Randika Dodangodage
  • Asiri NanayakkaraEmail author
Regular Article
  • 20 Downloads

Abstract.

Recurrence in classical random walks is well known and the idea has been investigated in quantum walks in many aspects. The recurrence in quantum walks is termed when the walker returns to the origin with a nonzero probability and if the final coin state is also the same as the initial coin state then the quantum walk is said to have a full revival. So far, full revival 2D quantum walks with a period larger than two steps have not been found and it has been argued that four-state quantum walks cannot have periods longer than two steps. In this paper, with the aid of simple 2D non-local coins we show that some four-state quantum walks can have full revivals with any even period and the periodicity can be controlled with a slight change of a single parameter within the coin operator.

References

  1. 1.
    Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wang, K. Manouchehri, Physical Implementation of Quantum Walks (Springer, Berlin, 2013)Google Scholar
  3. 3.
    S.E. Venegas-Andraca, Quantum Inf. Process. 11, 1015 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.C. Oliveira, R. Portugal, R. Donangelo, Phys. Rev. A 74, 012312 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Košík, V. Bužek, M. Hillery, Phys. Rev. A 74, 022310 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    P.K. Pathak, G.S. Agarwal, Phys. Rev. A 75, 032351 (2007)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S.D. Berry, J.B. Wang, Phys. Rev. A 83, 042317 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Hamilton, A. Gábris, I. Jex, S.M. Barnett, New J. Phys. 13, 013015 (2011)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T.A. Brun, H.A. Carteret, A. Ambainis, Phys. Rev. A 67, 032304 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Bisio, G.M. D'Ariano, M. Erba, P. Perinotti, A. Tosini, Phys. Rev. A 93, 062334 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    N. Konno, Y. Shimizu, M. Takei, Interdisciplinary Inf. Sci. 23, 1 (2017)Google Scholar
  12. 12.
    N. Konno, Quantum Inf. Process. 1, 345 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Sadowski, J.A. Miszczak, M.J. Ostaszewski, Phys. A 49, 375302 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Nanayakkara, R. Dodangodage, M. Jayakody, submitted to Acta Phys. Pol. A (2017)Google Scholar
  15. 15.
    M. Stefaňák, I. Jex, T. Kiss, Phys. Rev. Lett. 100, 020501 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M. Stefaňák, T. Kiss, I. Jex, Phys. Rev. A 78, 032306 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M. Stefaňák, T. Kiss, I. Jex, New J. Phys. 11, 043027 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Stefaňák, B. Kollár, T. Kiss, I. Jex, Phys. Scr. 2010, 014035 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Fundamental StudiesKandySri Lanka

Personalised recommendations