Advertisement

An efficient method for obtaining the ground and excited states mass spectrum of doubly heavy \( \Omega\) baryons

  • Nasrin Salehi
  • Neda Mohajery
Regular Article

Abstract.

In this paper, we obtained the ground state masses and the positive and negative parity excited state masses of doubly heavy \( \Omega\) baryons. For this goal we have analytically solved the radial Schrödinger equation for three identical particles with the hypercentral potential by using the ansatz method. In this study the hypercentral potential is regarded as a combination of the color Coulomb plus linear confining term and the six-dimensional harmonic oscillator potential which has a two-body character and turns out to be exactly hypercentral. We also added the first-order correction and the spin-dependent part contains three types of interaction terms (the spin-spin term, spin-orbit term and tensor term) to the hypercentral potential. Our calculations have been performed for the radial excited states as well as orbital excited states for \( \Omega_{cc}\) , \( \Omega_{bb}\) and \( \Omega_{bc}\) systems. The masses obtained are compared with other theoretical reports, which could be a benefit tool for the interpretation of experimentally unknown doubly heavy baryons spectrum. The doubly heavy baryons masses are experimentally unknown so that the Regge trajectories are plotted using calculated masses to assign the quantum numbers of baryons unknown states.

References

  1. 1.
    Z. Shah, A.K. Rai, Eur. Phys. J. C 77, 129 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    S. Koshkarev, V. Anikeev, arXiv:1605.03070v3 (2016)Google Scholar
  4. 4.
    Particle data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    SELEX Collaboration (M. Mattson et al.), Phys. Rev. Lett. 89, 112001 (2002)CrossRefGoogle Scholar
  6. 6.
    SELEX Collaboration (A. Ocherashvili et al.), Phys. Lett. B 628, 18 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 118, 182001 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    C. Garcia-Recio, J. Nieves, O. Romanets, L.L. Salcedo, L. Tolo, Phys. Rev. D 87, 034032 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    W.H. Liang, C.W. Xiao, E. Oset, Phys. Rev. D 89, 054023 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    B. Chen, K.W. Wei, A. Zhang, Eur. Phys. J. A 51, 82 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D 92, 114029 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Ke-Wei Wei, B. Chen, N. Liu, Q-Qian Wang, Xin-Heng Guo, arXiv:1609.02512v1 [hep-ph]Google Scholar
  14. 14.
    Y. Yamaguchi, S. Ohkoda, A. Hosaka, T. Hyodo, S. Yasui, Phys. Rev. D 91, 034034 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Mao, H.X. Chen, W. Chen, A. Hosaka et al., Phys. Rev. D 92, 114007 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    N. Salehi, A.A. Rajabi, Z. Ghalenovi, Acta Phys. Pol. B 42, 1247 (2011)CrossRefGoogle Scholar
  17. 17.
    L.I. Abou-Salem, Adv. High Energy Phys. 2014, 196484 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Shah, K. Thakkar, A. Kumar Rai, P.C. Vinodkumar, Eur. Phys. J. A 52, 313 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    H. Garcila, J. Vijande, A. Valcarce, J. Phys. G 34, 961 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Garcila, J. Vijande, A. Valcarce, Eur. Phys. J. A 37, 27 (2008)Google Scholar
  21. 21.
    E. Santopinto, M.M. Giannini, F. Iachello, in Symmetries in Science VII, edited by B. Gruber (Plenum Press, New York 1995) p. 445 and p. 213Google Scholar
  22. 22.
    L.Ya. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    K. Thakkar, Z. Shah, A.K. Rai, P.C. Vinodkumar, Nucl. Phys. A 965, 57 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett. 97, 122003 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A.K. Rai, D.P. Rathaud, Eur. Phys. J. C 75, 462 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    N. Devlani, V. Kher, A.K. Rai, Eur. Phys. J. A 50, 154 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Shah, A.K. Rai, Eur. Phys. J. A 53, 195 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Shah, K. Thakkar, A.K. Rai, P.C. Vinodkumar, Chin. Phys. C 40, 123102 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Shah, K. Thakkar, A.K. Rai, Eur. Phys. J. C 76, 530 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    W. Lucha, F. Schoberls, Int. J. Mod. Phys. C 10, 607 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    J. Ballot, M. Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    N. Salehi, A.A. Rajabi, Eur. Phys. J. Plus 128, 27 (2013)CrossRefGoogle Scholar
  33. 33.
    U. Loring, K. Kretzschmar, B.Ch. Metsch, H.R. Petry, Eur. Phys. J. A 10, 309 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Shah, K. Thakkar, A. Kumar Rai, P.C. Vinodkumar, Chin. Phys. C 40, 123102 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    N. Salehi, H. Hassanabadi, Rom. Rep. Phys. 67, 403 (2015)Google Scholar
  36. 36.
    N. Salehi, Adv. High Energy Phys. 2016, 5054620 (2016)CrossRefGoogle Scholar
  37. 37.
    E. Santopinto, Phys. Rev. C 72, 022201 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    A.A. Rajabi, N. Salehi, Iran. J. Phys. Res. 8, 169 (2008)Google Scholar
  39. 39.
    A.P. Martynenko, Phys. Lett. B 663, 317 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    F. Giannuzzi, Phys. Rev. D 79, 094002 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Z.G. Wang, Eur. Phys. J. A 47, 267 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Z.G. Wang, Eur. Phys. J. C 68, 459 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    T.M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 895, 59 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    T.M. Aliev, K. Azizi, M. Savci, J. Phys. G 40, 065003 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D 92, 114029 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A. Valcarce, H. Garcilazo, J. Vijande, Eur. Phys. J. A 37, 217 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, Phys. Rev. D 92, 114515 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    P.P. Rubio, S. Collins, G.S. Baliy, Phys. Rev. D 92, 034504 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Phys. Rev. D 90, 094507 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Namekawa, S. Aoki, K.-I. Ishikawa, N. Ishizuka et al., Phys. Rev. D 87, 094512 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys. Rev. D 90, 074501 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    K.-W. Wei, B. Chen, Phys. Rev. D 92, 076008 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    K.-W. Wei, arXiv:1609.02512v1 [hep-ph] (2016)Google Scholar
  56. 56.
    C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Eur. Phys. J. A 32, 183 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    Z. Ghalenovi, A.A. Rajabi, S.-X. Qin, D.H. Rischke, Mod. Phys. Lett. A 29, 1450106 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    A. Bernotas, V. Simonis, Lithuanian J. Phys. 49, 19 (2009)CrossRefGoogle Scholar
  59. 59.
    R. Roncaglia, D.B. Lichtenberg, E. Predazzi, Phys. Rev. D 52, 1722 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Basic Sciences, Shahrood BranchIslamic Azad UniversityShahroodIran

Personalised recommendations