Advertisement

Energy constraints and the phenomenon of cosmic evolution in the f(T,B) framework

  • M. Zubair
  • Saira Waheed
  • M. Atif Fayyaz
  • Iftikhar Ahmad
Regular Article
  • 6 Downloads

Abstract.

In this paper, we investigate the cosmological evolution in a new modified teleparallel gravity that connects both f(T) and f(R) theories with a boundary term B, called f(T,B) gravity. To this purpose, we assume flat Friedmann-Robertson-Walker (FRW) geometry filled with perfect fluid matter contents. We formulate the general energy constraints for two cases in this gravity: one is for a general function of f(T,B), and the other is for a particular form of it given by - T + F(B). Further, we explore the validity of these energy bounds by specifying different forms of f(T, B) and F(B) functions obtained by the reconstruction scheme for de Sitter, power-law, \(\Lambda\) CDM and phantom cosmological models. In order to constrain the free model parameters, we examine these energy bounds with the help of region graphs. We also explore the evolution of the effective equation of state (EoS) \(\omega_{\rm eff}\) for both cases and compare theoretical results with the observational data. It is found that the effective EoS represents the phantom phase or the quintessence state of accelerating universe in all cases, which is consistent with observational data.

References

  1. 1.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Capozziello, V. Faraoni, Beyond Einstein Gravity (Springer, Dordrecht, 2010)Google Scholar
  4. 4.
    S. Capozziello, M.D. Laurentis, Phys. Rep. 509, 167 (2011)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Koyama, Rep. Prog. Phys. 79, 046902 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    K. Bamba, S.D. Odintsov, Symmetry 7, 220 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Bamba, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 08, 045 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Sharif, M. Zubair, J. Cosmol. Astropart. Phys. 03, 028 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    H. Weyl, Sitzungsber. Preuss. Akad. Wissensch. 1918, 465 (1918)Google Scholar
  14. 14.
    L.O. Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, Princeton, 1998)Google Scholar
  15. 15.
    L.O. Raifeartaigh, N. Straumann, Rev. Mod. Phys. 72, 1 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    A. Einstein, Math. Ann. 102, 685 (1930) (for an English translation, together with three previous essays, see A. Unzicker, T. Case, Unified field theory based on Riemannian metrics and distant parallelismMathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966 (1921)Google Scholar
  18. 18.
    O. Klein, Z. Phys. 37, 895 (1926)ADSCrossRefGoogle Scholar
  19. 19.
    E. Cartan, Ann. Sci. Éc. Norm. Super. 40, 325 (1923)CrossRefGoogle Scholar
  20. 20.
    E. Cartan, Ann. Sci. Éc. Norm. Super. 41, 1 (1924)CrossRefGoogle Scholar
  21. 21.
    C. Møller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1, 10 (1961)Google Scholar
  22. 22.
    C. Møller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 89, 13 (1978)Google Scholar
  23. 23.
    C. Pellegrini, J. Plebanski, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 2, 2 (1962)Google Scholar
  24. 24.
    Y.M. Cho, Phys. Rev. D 14, 2521 (1976)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    K. Hayashi, T. Nakano, Prog. Theor. Phys. 38, 491 (1967)ADSCrossRefGoogle Scholar
  27. 27.
    K. Hayashi, Nuovo Cimento A 16, 639 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hayashi, Phys. Lett. B 69, 441 (1977)ADSCrossRefGoogle Scholar
  29. 29.
    R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction, in Fundamental Theories of Physics, Vol. 173 (Springer Dodrecht, Heidelberg, 2013)Google Scholar
  30. 30.
    J.W. Maluf, Ann. Phys. 525, 339 (2013) arXiv:1303.3897MathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    E.V. Linder, Phys. Rev. D 81, 127301 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    T. Wang, Phys. Rev. D 84, 024042 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 01, 009 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    C.G. Bohmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 85, 044033 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Y.P. Wu, C.Q. Geng, J. High Energy Phys. 11, 142 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A. Aviles, A. Bravetti, S. Capozziello, O. Luongo, Phys. Rev. D 87, 064025 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    S. Paliathanasis et al., Phys. Rev. D 89, 104042 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    J.T. Wheeler, Nucl. Phys. B 268, 737 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    I.S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    A. De Felice, S. Tsujikawa, Phys. Rev. D 80, 063516 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    M. Zubair, Int. J. Mod. Phys. D 25, 1650057 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    M. Zubair, G. Abbas, Astrophys. Space Sci. 361, 27 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    M. Zubair, Adv. High Energy Phys. 2015, 292767 (2015)CrossRefGoogle Scholar
  46. 46.
    G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084044 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    G. Kofinas, G. Leon, E.N. Saridakis, Class. Quantum Grav. 31, 175011 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    S. Bahamonde, C.G. Bohmer, Eur. Phys. J. C 76, 578 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, Phys. Rev. D 89, 124036 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    M. Zubair, S. Waheed, Astrophys. Space Sci. 355, 361 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    M. Zubair, S. Waheed, Astrophys. Space Sci. 360, 68 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Y.F. Cai, S. Capozziello, M.D. Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    K. Bamba, R. Myrzakulov, S. Nojiri, S.D. Odintsov, Phys. Rev. D 85, 104036 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    A.D. Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    T.P. Sotiriou, B. Li, J.D. Barrow, Phys. Rev. D 83, 104030 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    S. Bahamonde, C.G. Bohmer, M. Wright, Phys. Rev. D 92, 104042 (2015)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    S. Bahamonde, M. Zubair, G. Abbas, Phys. Dark Univ. 19, 78 (2018)CrossRefGoogle Scholar
  61. 61.
    J. Santos et al., Phys. Rev. D 76, 083513 (2007)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    J. Santos, M.J. Reboucas, J.S. Alcaniz, Int. J. Mod. Phys. D 19, 1315 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Di Liu, M.J. Reboucas, Phys. Rev. D 86, 083515 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    N.M. Garcia, Phys. Rev. D 83, 104032 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Y.Y. Zhao, Eur. Phys. J. C 72, 1924 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    O. Bertolami, M.C. Sequeira, Phys. Rev. D 79, 104010 (2009)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    J. Wang et al., Phys. Lett. B 689, 133 (2010)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    J. Wang, K. Liao, Class. Quantum Grav. 29, 215016 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    K. Atazadeh, A. Khaleghi, H.R. Sepangi, Y. Tavakoli, Int. J. Mod. Phys. D 18, 1101 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    M. Sharif, S. Waheed, Adv. High Energy Phys. 2013, 253985 (2013)Google Scholar
  71. 71.
    M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 014002 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    M. Sharif, M. Zubair, J. High Energy Phys. 12, 079 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    S. Waheed, M. Zubair, Astrophys. Space Sci. 359, 47 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    M. Visser, C. Barceló, COSMO 99, 98 (2000)Google Scholar
  75. 75.
    M. Sharif, S. Rani, R. Myrzakulov, Eur. Phys. J. Plus 128, 123 (2013) E. Curiel, A Primer on Energy ConditionsCrossRefGoogle Scholar
  76. 76.
    S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Phys. Rev. D 84, 043527 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    G. Hinshw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)ADSCrossRefGoogle Scholar
  78. 78.
    P.A.R. Ade et al., Astron. Astrophys. 571, A1 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Zubair
    • 1
  • Saira Waheed
    • 2
  • M. Atif Fayyaz
    • 3
  • Iftikhar Ahmad
    • 4
  1. 1.Department of MathematicsCOMSATS University IslamabadLahorePakistan
  2. 2.Prince Mohammad Bin Fahd UniversityAl KhobarSaudi Arabia
  3. 3.Govt. Post Graduate College KharianKharianPakistan
  4. 4.Riphah Institute of Computing and Applied Sciences (RICAS)Riphah International UniversityLahorePakistan

Personalised recommendations