Advertisement

A new family of analytical anisotropic solutions by gravitational decoupling

  • Milko Estrada
  • Francisco Tello-Ortiz
Regular Article

Abstract.

This work is focused on the study of analytic anisotropic solutions to Einstein’s field equations, describing spherically symmetric and static configurations by way of the gravitational decoupling through the method of minimal geometric deformation (MGD). For this we apply MGD to Heintzmann’s solution obtaining two new analytic and well behaved anisotropic solutions, in which all their parameters such as the effective density, the effective radial and tangential pressure, as well as radial and tangential sound speed, fulfill each of the requirements for the physical acceptability available in the literature.

References

  1. 1.
    M.K. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    M.K. Mak, T. Harko, Proc. R. Soc. London A 459, 393 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K.N. Singh, N. Pant, M. Govender, Indian J. Phys. 90, 1215 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Maurya, Y.K. Gupta, Saibal Ray, Debabrata Deb, Eur. Phys. J. C 76, 693 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Maurya, Eur. Phys. J. A 53, 89 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    B.V. Ivanov, Eur. Phys. J. C 77, 738 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    M.K. Jasim, S.K. Maurya, Y.K. Gupta, Astrophys. Space Sci. 361, 352 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Maurya, Y.K. Gupta, Baiju Dayanandan, Saibal Ray, Eur. Phys. J. C 76, 266 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Piyali Bhar, Ksh. Newton Singh, Tuhina Manna, Int. J. Mod. Phys. D 26, 1750090 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Thirukkanesh, F.C. Ragel, Ranjan Sharma, Shyam Das, Eur. Phys. J. C 78, 31 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Chaisi, S.D. Maharaj, Pramana 66, 313 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ovalle, Phys. Rev. D 95, 104019 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Ovalle, Braneworld Stars: Anisotropy Minimally Projected Onto the Brane, in Proceedings of the Ninth Asia-Pacific International Conference (Singapore, 2009) p. 173--182Google Scholar
  16. 16.
    Roberto Casadio, J. Ovalle, Roldao da Rocha, Class. Quantum Grav. 32, 215020 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ovalle, Int. J. Mod. Phys. Conf. Ser. 41, 1660132 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J. Ovalle, Laszl A. Gergely, Roberto Casadio, Class. Quantum Grav. 32, 045015 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Roberto Casadio, J. Ovalle, Roldao da Rocha, EPL 110, 40003 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Gabbanelli, A. Rincon, C. Rubio, Eur. Phys. J. C 78, 370 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Delgaty, Kayll Lake, Comput. Phys. Commun. 115, 395 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    H. Heintzmann, Z. Phys. 228, 489 (1969)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    N. Pant, R.N. Mehta, M. Pant, Astrophys. Space Sci. 332, 473 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    K.N. Singh, N. Pant, Indian J. Phys. 90, 843 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Cristiano Germani, Roy Maartens, Phys. Rev. D 64, 124010 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    George Ellis, Roy Maartens, Malcolm MacCallum, Gen. Relativ. Gravit. 39, 1651 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Private communication with Luis HerreraGoogle Scholar
  31. 31.
    Private communication with Tiberiu HarkoGoogle Scholar
  32. 32.
    H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Grav. 24, 4631 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    L. Herrera, Phys. Lett. A 165, 206 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 267, 637 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)ADSGoogle Scholar
  37. 37.
    R. Chan, S. Kichenassamy, G. Le Denmat, N.O. Santos, Mon. Not. R. Astron. Soc. 239, 91 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    S.K. Maurya, Y.K. Gupta, Saibal Ray, Baiju Dayanandan, Eur. Phys. J. C 75, 225 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de ciencias básicasUniversidad de AntofagastaAntofagastaChile
  2. 2.Instituto de Matemática, Física y EstadísticaUniversidad de las AméricasSantiagoChile
  3. 3.INACAPUniversidad Tecnológica de ChileSantiagoChile

Personalised recommendations