Advertisement

Thermal study of wet chemical synthesized CuInSe2 nanoparticles

  • Sanjaysinh M. Chauhan
  • Sunil H. Chaki
  • Jiten P. Tailor
  • M. P. Deshpande
Regular Article

Abstract.

The ternary chalcopyrite CuInSe2 nanoparticles were synthesized by the wet chemical technique. X-ray diffraction shows that nanoparticles have an elemental proportion near to stoichiometry and possess tetragonal structure. Transmission electron microscopy shows that nanoparticles are of uniform shape and size. The thermal analysis of the nanoparticles is carried out by recording thermogravimetric, differential thermogravimetric and differential thermal analysis curves. The obtained results are discussed in detail in the paper.

References

  1. 1.
    A.M. Soydan, P. Yilmaz, B. Tunaboylu, J. Chem. 2018, 5187960 (2018)CrossRefGoogle Scholar
  2. 2.
    J.-Sub Hahn, G. Park, J. Lee, J. Shim, J. Ind. Eng. Chem. 21, 754 (2015)CrossRefGoogle Scholar
  3. 3.
    K.J. McHugh, L. Jing, A.M. Behrens, S. Jayawardena, W. Tang, Adv. Mater. 30, 1706356 (2018)CrossRefGoogle Scholar
  4. 4.
    A.B. Rohom, P.U. Londhe, N.B. Chaure, J. Electrochem. Soc. 165, H3051 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Belal, R.T.-I. Zair, F. Ghezal, Am. J. Nanosci. 3, 53 (2017)CrossRefGoogle Scholar
  6. 6.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, Mater. Sci. Semicond. Process. 74, 329 (2018)CrossRefGoogle Scholar
  7. 7.
    J.Y. Choi, S.J. Lee, W.S. Seo, H. Song, Cryst. Eng. Commun. 18, 6069 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Witt, J.K. Olesiak, Chem. Eur. J. 19, 9746 (2013)CrossRefGoogle Scholar
  9. 9.
    H.Z. Zhong, Z.B. Wang, E. Bovero, Z.H. Lu, F.C.J.M. van Veggel, G.D. Scholes, J. Phys. Chem. C 115, 12396 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Wooten, D.J. Werder, D.J. Williams, J.L. Casson, J.A. Hollingsworth, J. Am. Chem. Soc. 131, 16177 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Mardanian, A.A. Nevar, M. Nedel’ko, N.V. Tarasenko, Eur. Phys. J. D 67, 208 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.P. Oleksak, B.T. Flynn, D.M. Schut, G.S. Herman, Phys. Status Solidi A 211, 219 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    N.D. Abazović, D.J. Jovanović, M.M. Stoiljković, M.N. Mitrić, S.P. Ahrenkiel, J.M. Nedeljković, M.I. Čomor, J. Serb. Chem. Soc. 77, 789 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Lee, S.-Ho Lee, J.-Sub Hahn, H.-Jung Sun, G. Park, J. Shim, J. Nanosci. Nanotechnol. 14, 9313 (2014)CrossRefGoogle Scholar
  15. 15.
    R.R. Philip, B. Pradeep, Thin Solid Films 472, 136 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Nano Lett. 8, 2982 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    B. Li, Y. Xie, J. Huang, Y. Qian, Adv. Mater. 11, 1456 (1999)CrossRefGoogle Scholar
  18. 18.
    E. Yassitepe, Z. Khalifa, G.H. Jaffari, C.S. Chou, S. Zulfiqar, M.I. Sarwar, S.I. Shah, Powder Technol. 201, 27 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Chen, S.M. Yu, D.W. Shin, J.B. Yoo, Nanoscale Res. Lett. 5, 217 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    K.H. Kim, S.J. Ahn, B.T. Ahn, K.H. Yoon, Solid State Phenom. 124--126, 983 (2007)CrossRefGoogle Scholar
  21. 21.
    J.D. Wu, L.T. Wang, C. Gau, Sol. Energy Mater. Sol. Cells 98, 404 (2012)CrossRefGoogle Scholar
  22. 22.
    C.P. Liu, C.L. Chuang, Powder Technol. 229, 78 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Dutková, M.J. Sayagués, J. Kováč, J. Kováč, Mater. Lett. 173, 182 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Mardanian, A.A. Nevar, M. Nedel’ko, N.V. Tarasenko, Eur. Phys. J. D 67, 208 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Nano Lett. 8, 2982 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    C.H. Wu, F.S. Chen, S.H. Lin, C.H. Lu, J. Alloys Compd. 509, 5783 (2011)CrossRefGoogle Scholar
  27. 27.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, Amitsinh V. Mangrola, Nano-Struct. Nano-Objects 16, 200 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Salem, Eur. Phys. J. Plus 129, 263 (2014)CrossRefGoogle Scholar
  29. 29.
    F. Behrad, M.H.R. Farimani, N. Shahtahmasebi, M.R. Roknabadi, M. Karimipour, Eur. Phys. J. Plus 130, 144 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Kang, J. Ao, G. Sun, Q. He, Y. Sun, J. Alloys Compd. 478, L25 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Agarwal, S.H. Chaki, D. Lakshminarayana, Mater. Lett. 61, 5188 (2007)CrossRefGoogle Scholar
  32. 32.
    H. Matsushita, T. Takizawa, Jpn. J. Appl. Phys. 34, 4699 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    H.E. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  34. 34.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, T.J. Malek, J.P. Tailor, Int. J. Thermophys. 39, 18 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.P. G. Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.Applied Physics DepartmentS.V.N.I.T.SuratIndia

Personalised recommendations