Advertisement

The time eigenvalue spectrum for nuclear reactors in multi-group diffusion theory

  • S. Dulla
  • P. Ravetto
  • P. SaraccoEmail author
Regular Article

Abstract.

We develop a fully analytical study of the spectrum of the neutron diffusion operator both for spatially homogeneous and reflected reactors in a multi-group energy model. We illustrate and discuss the results of the analysis of the time spectrum of the diffusion operator, to highlight some general properties of the neutronic evolution in a multiplying system. Various new results are presented, particularly regarding the possible existence of complex time eigenvalues, the appearance of a continuum part of the spectrum and the orthogonality properties of the eigenfunctions in the case of an infinite reflector.

References

  1. 1.
    S. Dulla, P. Ravetto, M.M. Rostagno, G. Bianchini, M. Carta, A. D’Angelo, Nucl. Sci. Eng. 149, 88 (2005)CrossRefGoogle Scholar
  2. 2.
    E. Garelis, Nukleonik 9, 187 (1967)Google Scholar
  3. 3.
    Y. Asahi, J. Nucl. Sci. Technol. 12, 92 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.E. Corno, S. Dulla, P. Picca, P. Ravetto, Progr. Nucl. Energy 50, 847 (2008)CrossRefGoogle Scholar
  5. 5.
    P. Saracco, S. Dulla, P. Ravetto, Progr. Nucl. Energy 59, 86 (2012)CrossRefGoogle Scholar
  6. 6.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, UK, 1959)Google Scholar
  7. 7.
    S.E. Corno, R. Guandalini, S. Nardi, Rend. Sem. Mat. Univ. Politec. Torino 32, 435 (1974)Google Scholar
  8. 8.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1970)Google Scholar
  9. 9.
    H.C. Tuckwell, Int. J. Syst. Sci. 19, 1663 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (John Wiley and Sons, New York, USA, 1976)Google Scholar
  11. 11.
    E.W. Larsen, P.F. Zweifel, J. Math. Phys. 15, 1987 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    E.W. Larsen, J. Math. Phys. 20, 1776 (1979)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Montagnini, Meccanica 14, 134 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Politecnico di Torino, Dipartimento EnergiaTorinoItaly
  2. 2.INFN, Sezione di TorinoTorinoItaly
  3. 3.INFN, Sezione di GenovaGenovaItaly
  4. 4.Centro FermiRomaItaly

Personalised recommendations