Advertisement

Soliton and breather interactions for a coupled system

  • Cui-Cui Ding
  • Yi-Tian Gao
  • Lei Hu
  • Ting-Ting Jia
Regular Article
  • 11 Downloads

Abstract.

Under investigation in this paper is a higher-order nonlinear Schrödinger-Maxwell-Bloch system with the sextic term which might describe the ultrashort optical pulses, up to the attosecond duration, in an erbium-doped fiber. We derive the Lax pair and Darboux transformation, which are both related to \( \beta\) and \( \omega\) , the coefficient for the higher-order terms and the detuning of the atomic transition frequency from the incoming radiation frequency, respectively. Bright and dark solitons and breathers are constructed by virtue of the Darboux transformation. Besides, based on the breather solutions, we get the first-order rogue wave solutions via the limiting procedure. We see that both \( \beta\) and \( \omega\) affect velocities and widths of the solitons, also decide whether the solution is a bright or dark soliton while have no effect on the periods of the two types of breathers. The interaction between the solitons is elastic, and the periodic structure comes into being with the interaction between the two solitons when the velocities of the two interacted solitons are equal to each other. With different eigenvalues, different interaction forms between the two types of the breathers are obtained. Interaction between the two breathers with the adjacent frequencies forms the bound breather with a periodic attractive-repulsive structure. Especially, two near-degenerate cases of the interactions are also exhibited.

References

  1. 1.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 2002)Google Scholar
  2. 2.
    A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    L. Liu, B. Tian, H.M. Yin, Z. Du, Wave Motion 80, 91 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Phys. Rev. Lett. 45, 1095 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    M. McCall, E.L. Hahn, Phys. Rev. Lett. 18, 908 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    K. Porsezian, K. Nakkeeran, Phys. Rev. Lett. 74, 2941 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 1, 45 (1992)Google Scholar
  9. 9.
    K. Nakkeeran, K. Porsezian, J. Phys. A 28, 3817 (1995)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A.M. Basharov, A.I. Maimistov, E.A. Manykin, Sov. Phys. JETP 57, 282 (1983)Google Scholar
  11. 11.
    M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, Phys. Rev. A 45, 23 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    J.S. He, S.W. Xu, K. Porsezian, Phys. Rev. E 86, 066603 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C.Q. Su, Y.T. Gao, L. Xue, X. Yu, Z. Naturforsch. A 90, 105202 (2015)Google Scholar
  14. 14.
    M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. Lett. 66, 2625 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    M. Nakazawa, E. Yamada, H. Kubota, Phys. Rev. A 44, 5973 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    K. Porsezian, J. Mod. Opt. 47, 1635 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Porsezian, K. Nakkeeran, Phys. Lett. A 206, 183 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    S. Porsezian, K. Nakkeran, J. Phys. Soc. Jpn. 63, 885 (1994)CrossRefGoogle Scholar
  19. 19.
    I.P. Christov, Phys. Rev. A 60, 3244 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, Cambridge, 2010)Google Scholar
  21. 21.
    G. Dattoli, F.P. Orsitto, A. Torre, Opt. Lett. 14, 456 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    X.Y. Gao, Appl. Math. Lett. 73, 143 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Z. Du, B. Thian, H.P. Chai, Y.Q. Yuan, Commun. Nonlinear Sci. Numer. Simul. 67, 49 (2019)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D.W. Zuo, Y.T. Gao, Y.J. Feng, L. Xue, Nonlinear Dyn. 78, 2309 (2014)CrossRefGoogle Scholar
  25. 25.
    X.X. Du, B. Tian, X.Y. Wu, H.M. Yin, C.R. Zhang, Eur. Phys. J. Plus 133, 378 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.Q. Yuan, B. Tian, L. Liu, X.Y. Wu, Y. Sun, J. Math. Anal. Appl. 460, 476 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    X.H. Zhao, B. Tian, J. Chai, X.Y. Wu, Y.J. Guo, Eur. Phys. J. Plus 132, 192 (2018)CrossRefGoogle Scholar
  28. 28.
    X.Y. Gao, Ocean Eng. 96, 245 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Ankiewicz, D.J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev, Phys. Rev. E 93, 012206 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Kharif, E. Pelinovsky, Eur. J. Mech. B Fluids 22, 603 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    N. Akhmediev, J.M. Dudley, D.R. Solli, S.K. Turitsyn, J. Opt. 15, 0201 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Liu, B. Tian, Y.Q. Yuan, Z. Du, Phys. Rev. E 97, 052217 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Sun, B. Tian, L. Liu, X.Y. Wu, Chaos, Solitons Fractals 107, 266 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C.R. Zhang, B. Tian, X.Y. Wu, Y.Q. Yuan, X.X. Du, Phys. Scr. 93, 095202 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Y.V. Bludov, V.V. Konotop, N. Akhmediev, Phys. Rev. A 80, 2962 (2009)Google Scholar
  36. 36.
    X.Y. Wu, B. Tian, L. Liu, Y. Sun, Comput. Math. Appl. 72, 215 (2018)CrossRefGoogle Scholar
  37. 37.
    C.C. Hu, B. Tian, X.Y. Wu, Y.Q. Yuan, Z. Du, Eur. Phys. J. Plus 133, 40 (2018)CrossRefGoogle Scholar
  38. 38.
    X.Y. Wu, B. Tian, H.M. Yin, Z. Du, Nonlinear Dyn. 93, 1635 (2018)CrossRefGoogle Scholar
  39. 39.
    W.M. Moslem, Phys. Plasmas 18, 032301 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Z.Y. Yan, Theor. Phys. 54, 947 (2010)ADSGoogle Scholar
  41. 41.
    N.N. Akhmediev, V.I. Korneev, Theor. Math. Phys. 69, 1089 (1986)CrossRefGoogle Scholar
  42. 42.
    Y.C. Ma, Stud. Appl. Math. 60, 43 (1979)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibres (Cambridge University Press, Cambridge, 2010)Google Scholar
  44. 44.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)Google Scholar
  45. 45.
    A. Veksler, Y. Zarmi, Physica D 211, 57 (2005)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 90, 032922 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 88, 013207 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Z.Y. Sun, Y.T. Gao, X. Yu, W.J. Liu, Y. Liu, Phys. Rev. E 80, 066608 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, Phys. Rev. Lett. 107, 253901 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cui-Cui Ding
    • 1
  • Yi-Tian Gao
    • 1
  • Lei Hu
    • 1
  • Ting-Ting Jia
    • 1
  1. 1.Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid DynamicsBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations