Advertisement

Comments on stellar evolution

  • Mounib F. El Eid
Review
  • 20 Downloads
Part of the following topical collections:
  1. Focus Point on Modern Astronomy: Selected Issues in Nuclear and High Energy Astrophysics

Abstract.

Given the limited space in this contribution, it is not possible to go into the details of the exciting astrophysical topic of stellar evolution and nucleosynthesis. It is attempted to emphasize the basics of this basic concept of the hydrostatic evolution of stars as they are driven by the interplay between gravity and nuclear energy generation, which is expressed by the virial theorem. In the case of massive stars roughly above \( 8 {\rm M}_{\odot}\), the breakdown of the hydrostatic evolution, due to the lack of nuclear energy generation, leads to gravitational collapse followed either by a successful supernova explosion, leaving a neutron star behind, or by a black hole, which is the ultimate end stage. The stars of masses in the lower mass range end their evolution as white dwarfs. The nucleosynthesis process in stars is a complex task. Most of the elements and their isotopes, especially the heavy elements, are produced in an explosive environment, or in the late stages of the asymptotic giant branch stars. The present paper will concentrate mainly on the evolutionary aspects, due to the to limited space given here.

References

  1. 1.
    I. Iben Jr., A. Renzini, Phys. Rep. 105, 329 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    M.F. El Eid, Astron. Astrophys. 285, 915 (1994)ADSGoogle Scholar
  3. 3.
    K. Nomoto, M. Hashimoto, Phys. Rep. 163, 13 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    J. Jose, G. Hallabi, M.F. El Eid, Astron. Astrophys. 593, A54 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    V. Bromm et al., Nature 459, 49B (2009)ADSCrossRefGoogle Scholar
  6. 6.
    W.W. Ober, M.F. El Eid, K.J. Fricke, Astron. Astrophys. 119, 61 (1983)ADSGoogle Scholar
  7. 7.
    A. Heger, S.E. Woosley, Astrophys. J. 567, 532 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    V. Bromm et al., Nature 459, 29 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Gal-Yam et al., Nature 462, 579 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Kippenhahn, A. Wegert, Stellar Structure and Evolution (Springer Verlag, Berlin, 1990)Google Scholar
  11. 11.
    F.J. Roger, C.A. Iglesias, Astrophys. J. Suppl. 79, 507 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    O. Straniero et al., ASP Conf. Ser. 497, 259 (2015)ADSGoogle Scholar
  13. 13.
    F. Herwig et al., Astron. Astrophys. 324, L81 (1997)ADSGoogle Scholar
  14. 14.
    L. Deng, D.R. Xiong, Mon. Not. R. Astron. Soc. 386, 1979 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B. Freytag et al., Astron. Astrophys. 313, 497 (1996)ADSGoogle Scholar
  16. 16.
    B.W. Carroll, D.A. Ostile, An Introduction to Modern Astrophysics (Pearson, New York, 2007)Google Scholar
  17. 17.
    B. Paczynski, M. Rozyczka, Acta Astron. 25, 213 (1977)ADSGoogle Scholar
  18. 18.
    M.F. El Eid, L.-S. The, B.S. Meyer, Space Sci. Rev. 147, 1 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    F. Herwig, Annu. Rev. Astron. Astrophys. 43, 435 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Busso et al., Annu. Rev. Astron. Astrophys. 37, 239 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    C. Sneden, J.J. Cowan, R. Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Jones et al., Mon. Not. R. Astron. Soc. 455, 3848 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    G.M. Halabi, M.F. El Eid, A. Champgane, Astrophys. J. 761, 10 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Salaris, S. Cassisi, Evolituon of Stars and Stellar populations (Wiley:Chichester West Sussex, UL, 2008)Google Scholar
  25. 25.
    A.-J. Lai, Y. Li, Res. Astron. Astophys. 11, 1351 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R.J. de Boer, arXiv:1709.03144v1 (2107)Google Scholar
  27. 27.
    M. Kunz et al., Astrophys. J. 567, 643 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M. Angulo et al., Nucl. Phys. A 656, 3 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    G. Imbtriani et al., Astrophys. J. 558, 903 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    G.R. Caughlan et al., At. Data Nucl. Data Tables 32, 197 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    G.R. Caughlan et al., At. Data Nucl. Data Tables 40, 283 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    L.-S. The, M.F. El Eid, B.S. Meyer, Astrophys. J. 655, 1058 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    F.K. Thielemann et al., Annu. Rev. Nucl. Part. Sci. 67, 253 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.American University of BeirutDepartment of PhysicsBeirutLebanon

Personalised recommendations