Advertisement

Black crusts on Venetian built heritage, investigation on the impact of pollution sources on their composition

  • Mauro F. La Russa
  • Valeria Comite
  • Nevin Aly
  • Donatella Barca
  • Paola Fermo
  • Natalia Rovella
  • Fabrizio Antonelli
  • Elena Tesser
  • Marco Aquino
  • Silvestro A. RuffoloEmail author
Regular Article
Part of the following topical collections:
  1. Focus Point on New Challenges in the Scientific Applications to Cultural Heritage

Abstract.

This paper deals with the characterization of black crusts collected from several historical buildings in the city of Venice. This city suffers from pollution from the industrial area of Marghera, as well as from the maritime traffic. Black crust can be considered as a passive sampler of pollutants, with particular reference to heavy metals. For this reason, in order to fully characterize those samples, several techniques were used, including scanning electron microscopy, thermogravimetric analysis, laser ablation inductively coupled plasma mass spectrometry, infrared spectroscopy and ion chromatography. This integrated approach allowed us to gain information about the mineralogical phases and the elements within the crusts giving the possibility to identify the pollution sources causing the stone decay within the buildings, as well as the variability in composition depending on the exposure of the analyzed surfaces.

References

  1. 1.
    G.G. Amoroso, V. Fassina, Stone Decay and Conservation, in Materials Science Monographs, Vol. 11 (Elsevier, Amsterdam, 1983) pp. 453Google Scholar
  2. 2.
    A. Bonazza, C. Sabbioni, N. Ghedini, Atmos. Environ. 39, 2607 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    P. Brimblecombe, Urban Air Pollution-European Aspects, edited by J. Finger, O. Herter, F. Palmer (Kluwer, Dordrecht, 1999)Google Scholar
  4. 4.
    P. Brimblecombe, J. Archit. Conserv. 6, 30 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Del Monte, C. Sabbioni, O. Vittori, Atmos. Environ. 15, 645 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    A.V. Turkington, B.J. Smith, W.B. Whalley, Proceedings. of the 4th International Sympasium on the Conservation of Monuments in the Mediterranean Basin, Rhodes (Technical Chamber of Greece, 1997)Google Scholar
  7. 7.
    G. Zappia et al., Sci. Total Environ. 224, 235 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    A. Moropoulou, A. Cakmak, G. Biscontin, Crushed brick/limemortars of Justinian’s (Materials Research Society Publishing, Pittsburgh, 1997)Google Scholar
  9. 9.
    S.J. Antill, H.A. Viles, Aspects of stone weathering, decay and conservation (Imperial College PressGoogle Scholar
  10. 10.
    B.J. Smith et al., Environment 38, 1173 (2003)Google Scholar
  11. 11.
    P. Maravelaki-Kalaitzaki et al., Spectrochim. Acta. Part B 52, 41 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    P. Maravelaki-Kalaitzaki, G. Biscontin, Atmos. Environ. 33, 1699 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    D. Barca et al., Environ. Sci. Pollut. Res. 17, 1433 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Barca et al., J. Anal. At. Spectrom. 26, 1000 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Barca et al., Appl. Geochem. 48, 122 (2014)CrossRefGoogle Scholar
  16. 16.
    V. Comite, Rendiconti Online della Società Geologica Italiana, edited by S. Critelli, F. Muto, F. Perri, F.M. Petti, M. Sonnino, A. Zuccari (Arcavacata di Rende, 2012) $86^{\circ}$ Congr. Naz. Società Geologica Italiana Roma, Vol. 21 (2012)Google Scholar
  17. 17.
    C.M. Belfiore et al., Environ. Sci. Pollut. Res. 20, 8848 (2013)CrossRefGoogle Scholar
  18. 18.
    M.F. La Russa et al., Appl. Phys. A Mater. Sci. Process. 113, 1151 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Ruffolo et al., Sci. Total Environ. 502, 157 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    B. Gratuze, J. Archaeol. Sci. 26, 869 (1999)CrossRefGoogle Scholar
  21. 21.
    E. Vander Putten et al., Anal. Chim. Acta 378, 261 (1999)CrossRefGoogle Scholar
  22. 22.
    T. Wyndham et al., Geochim. Cosmochim. Acta 68, 2067 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    D. Gunther, C.A. Heinrich, J. Anal. At. Spectrom 14, 1363 (1999)CrossRefGoogle Scholar
  24. 24.
    N.J.G. Pearce et al., Geostand. Newslett. 1, 115 (1997)CrossRefGoogle Scholar
  25. 25.
    B.J. Fryer, S.E. Jackson, H.P. Longerich, Can. Mineral. 33, 303 (1995)Google Scholar
  26. 26.
    S. Gao et al., Geostand. Newslett. 26, 181 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Del Monte, C. Sabbioni, Environ. Sci. Technol. 17, 518 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    C. Sabbioni, G. Zappia, Aerobiologia 7, 31 (1991)CrossRefGoogle Scholar
  29. 29.
    M. Monte, J. Cult. Herit. 4, 255 (2003)CrossRefGoogle Scholar
  30. 30.
    G. Barone et al., Environ. Geol. 55, 449 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A. Lluveras et al., Appl. Phys. A 90, 23 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    C.M. Belfiore et al., Appl. Phys. A 100, 835 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    D. Gulotta et al., Earth Sci. 69, 1085 (2013)CrossRefGoogle Scholar
  34. 34.
    P. Fermo et al., Environ. Sci. Pollut. Res. 22, 6262 (2015)CrossRefGoogle Scholar
  35. 35.
    M.F. La Russa et al., Sci. Tot. Environ. 593-594, 297 (2017)CrossRefGoogle Scholar
  36. 36.
    W.C. Keene et al., J. Geophys. Res. 91, 6647 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    A.M.E. Hawley, J.N. Galloway, W.C. Keene, Water Air Soil Pollut. 42, 87 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    M.C. Bove et al., Atmos. Environ. 125, 140 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    S. Karthikeyan, R. Balasubramanian, Microchem. J. 82, 49 (2006)CrossRefGoogle Scholar
  40. 40.
    A. Caseiro et al., Atmos. Environ. 43, 2186 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Piazzalunga et al., Anal. Bioanal. Chem. 405, 1123 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Piazzalunga et al., Int. J. Environ. Anal. Chem. 90, 934 (2010)CrossRefGoogle Scholar
  43. 43.
    E. Gregoris et al., Environ. Sci. Pollut. Res. 23, 6951 (2016)CrossRefGoogle Scholar
  44. 44.
    C. Rodriguez-Navarro, E. Sebastian, Sci. Total Environ. 187, 79 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    D. Contini et al., J. Environ. Manag. 92, 2119 (2011)CrossRefGoogle Scholar
  46. 46.
    M.D. Geller et al., Atmos. Environ. 40, 6988 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    B. Pavoni, Changes in an estuarine ecosystem. The Lagoon of Venice as a case study in The Science Society of Global Change (American Chemical Society, Washington, DC, 1992)Google Scholar
  48. 48.
    L.G. Bellucci et al., Sci. Total Environ. 295, 35 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    R. Zonta et al., Mar. Pollut. Bull. 55, 529 (2007)CrossRefGoogle Scholar
  50. 50.
    M.D. Geller et al., Atmos. Environ. 40, 6988 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    H. Harmens et al., Atmos. Environ. 41, 6673 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    H. Harmens, D.A. Norris, The Participants of the Moss Survey, Spatial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990--2005), ICP Vegetation Programme, Coordination Centre, Centre for Ecology & Hydrology/Natural Environment Research Council (2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mauro F. La Russa
    • 1
  • Valeria Comite
    • 2
  • Nevin Aly
    • 3
  • Donatella Barca
    • 1
  • Paola Fermo
    • 2
  • Natalia Rovella
    • 1
  • Fabrizio Antonelli
    • 4
  • Elena Tesser
    • 5
  • Marco Aquino
    • 1
  • Silvestro A. Ruffolo
    • 1
    Email author
  1. 1.Department of Biology, Ecology and Earth ScienceRende, CosenzaItaly
  2. 2.Department of ChemistryUniversità degli Studi di MilanoMilanoItaly
  3. 3.Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  4. 4.Laboratorio di Analisi dei Materiali Antichi (LAMA)University Iuav di VeneziaVeniceItaly
  5. 5.Department of Mulecular Science and NanosystemsUniversity Ca’ FoscariVeniceItaly

Personalised recommendations