Advertisement

Towards a portable X-ray luminescence instrument for applications in the Cultural Heritage field

  • Alessandro Re
  • Marco Zangirolami
  • Debora Angelici
  • Alessandro Borghi
  • Emanuele Costa
  • Roberto Giustetto
  • Lorenzo Mariano Gallo
  • Lisa Castelli
  • Anna Mazzinghi
  • Chiara Ruberto
  • Francesco Taccetti
  • Alessandro Lo Giudice
Regular Article
Part of the following topical collections:
  1. Focus Point on New Challenges in the Scientific Applications to Cultural Heritage

Abstract.

Analytical techniques based on luminescence properties of materials have proved to be useful in the study of artistic and archaeological materials. For example, iono-luminescence (IL), in conjunction with ion beam analysis (IBA) techniques, and cathodoluminescence (CL), coupled with optical microscopy or scanning electron microscopy (SEM), are important for identifying mineral phases and provenance studies. X-ray luminescence (XRL) has been used on Cultural Heritage less than other luminescence techniques; we therefore investigated its potential in this field. The first developed setup, necessarily to be used in the laboratory, was tested on a provenance study of the lapis lazuli “Savoy Collection”, kept by the Regional Museum of Natural Sciences in Turin. Very interesting results were obtained: while some samples were labelled as Chilean origin (or simply no attribution), XRL spectra clearly excluded that particular provenance for any specimen of the collection. Although this approach has given valuable information, the potentiality of the technique has not yet been fully exploited due to lack of portability, a great limitation for characterising ancient artefacts. We therefore upgraded the sensitivity of our detection setup, in order to respond also to lower signal levels obtainable with portable X-ray sources. The first results are encouraging and comparable with those obtained with non-portable setups.

References

  1. 1.
    M. Gaft, R. Reisfeld, G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, Heidelberg, 2005)Google Scholar
  2. 2.
    C. Manfredotti et al., Diam. Relat. Mater. 19, 854 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Forneris et al., Nucl. Instrum. Methods B 348, 187 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    A.M. Gueli et al., Nuovo Cimento B 125, 719 (2010)Google Scholar
  5. 5.
    G. Stella et al., Geochronometria 40, 153 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Götze, Mineral. Mag. 72, 909 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Lo Giudice et al., Anal. Bioanal. Chem. 404, 277 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Götze, Anal. Bioanal. Chem. 374, 703 (2002)CrossRefGoogle Scholar
  9. 9.
    Y. Tuncer Arslanlar et al., Appl. Radiat. Isotopes 69, 1299 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Lo Giudice et al., Archaeol. Anthrop. Sci. 9, 637 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Calderón, Rev. Mex. Fis. 54, 21 (2008)Google Scholar
  12. 12.
    H.A. Hänni, L. Kiefert, P. Giese, J. Gemol. 29, 325 (2005)CrossRefGoogle Scholar
  13. 13.
    F. Mathis et al., Nucl. Instrum. Methods B 268, 2078 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    H. Calvo del Castillo, J.L. Ruvalcaba, T. Calderón, Anal. Bioanal. Chem. 387, 869 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Calusi et al., Nucl. Instrum. Methods B 266, 2306 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L. Pichon et al., Nucl. Instrum. Methods B 348, 68 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    C. Czelusniak et al., Nucl. Instrum. Methods B 371, 336 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    A. Nevin et al., Sensors 14, 6338 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Lo Giudice et al., Anal. Bioanal. Chem. 395, 2211 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Re et al., Nucl. Instrum. Methods B 348, 278 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    A. Romani et al., Accounts Chem. Res. 43, 837 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Angelici et al., Microsc. Microanal. 21, 526 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mazzinghi et al., X-Ray Spectrom. 45, 28 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C. Ruberto et al., Microchem. J. 126, 63 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Corsi et al., Archaeol. Anthrop. Sci. 10, 431 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Re et al., Appl. Phys. A Mater. 111, 69 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    A. Re et al., Herit. Sci. 2, 19 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Re et al., Herit. Sci. 3, 4 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Re et al., Int. J. Conserv. Sci. 7(SI2), 935 (2016)Google Scholar
  30. 30.
    E. Costa, L.M. Gallo, Minerali a Torino. Le collezioni del Museo di Mineralogia dell’Università e del Museo Regionale di Scienze Naturali di Torino, in Collana “Le collezioni”, 1 (Museo Regionale di Scienze Naturali di Torino, 2011)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Re
    • 1
    • 2
  • Marco Zangirolami
    • 1
  • Debora Angelici
    • 1
    • 2
    • 3
    • 4
  • Alessandro Borghi
    • 3
  • Emanuele Costa
    • 3
  • Roberto Giustetto
    • 3
    • 2
  • Lorenzo Mariano Gallo
    • 5
  • Lisa Castelli
    • 6
  • Anna Mazzinghi
    • 6
    • 7
  • Chiara Ruberto
    • 6
    • 7
  • Francesco Taccetti
    • 6
  • Alessandro Lo Giudice
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di TorinoTorinoItaly
  2. 2.INFNSezione di TorinoTorinoItaly
  3. 3.Dipartimento di Scienze della TerraUniversità di TorinoTorinoItaly
  4. 4.TecnArt S.r.l.TorinoItaly
  5. 5.Museo Regionale di Scienze NaturaliTorinoItaly
  6. 6.INFNSezione di FirenzeFirenzeItaly
  7. 7.Dipartimento di Fisica e AstronomiaUniversità di FirenzeFirenzeItaly

Personalised recommendations