Advertisement

On the equivalence of Jordan and Einstein frames in scale-invariant gravity

  • Massimiliano Rinaldi
Regular Article
  • 14 Downloads

Abstract.

In this paper we consider the issue of the classical equivalence of scale-invariant gravity in the Einstein and in the Jordan frames. We first consider the simplest example \( f(R)=R^{2}\) and show explicitly that the equivalence breaks down when dealing with Ricci-flat solutions. We discuss the link with the fact that flat solutions in quadratic gravity have zero energy. We also consider the case of scale-invariant tensor-scalar gravity and general f(R) theories. We argue that all scale-invariant gravity models have Ricci flat solutions in the Jordan frame that cannot be mapped into the Einstein frame. In particular, the Minkowski metric exists only in the Jordan frame. In this sense, the two frames are not equivalent.

References

  1. 1.
    E.E. Flanagan, Class. Quantum Grav. 21, 3817 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    S. Capozziello, P. Martin-Moruno, C. Rubano, Phys. Lett. B 689, 117 (2010)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Faraoni, E. Gunzig, Int. J. Theor. Phys. 38, 217 (1999)CrossRefGoogle Scholar
  4. 4.
    N. Deruelle, M. Sasaki, Springer Proc. Phys. 137, 247 (2011)CrossRefGoogle Scholar
  5. 5.
    M.S. Ruf, C.F. Steinwachs, Phys. Rev. D 97, 044050 (2018)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Bamba, G. Cognola, S.D. Odintsov, S. Zerbini, Phys. Rev. D 90, 023525 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Boulware, G.T. Horowitz, A. Strominger, Phys. Rev. Lett. 50, 1726 (1983)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Rinaldi, L. Vanzo, Phys. Rev. D 94, 024009 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst, A. Riotto, Fortsch. Phys. 64, 176 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C. Kounnas, D. Lüst, N. Toumbas, Fortsch. Phys. 63, 12 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    G. Cognola, M. Rinaldi, L. Vanzo, S. Zerbini, Phys. Rev. D 91, 104004 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Cognola, M. Rinaldi, L. Vanzo, Entropy 17, 5145 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Bhattacharya, A. Lahiri, Phys. Rev. Lett. 99, 201101 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C.M. Chambers, I.G. Moss, Phys. Rev. Lett. 73, 617 (1994)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Marozzi, M. Rinaldi, R. Durrer, Phys. Rev. D 83, 105017 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Calzà, M. Rinaldi, L. Sebastiani, Eur. Phys. J. C 78, 178 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    S. Deser, B. Tekin, Phys. Rev. Lett. 89, 101101 (2002)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Deser, B. Tekin, Phys. Rev. D 67, 084009 (2003)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Deser, B. Tekin, Phys. Rev. D 75, 084032 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TrentoTrentoItaly
  2. 2.TIFPA - INFNTrentoItaly

Personalised recommendations