Advertisement

Adsorption of dyes onto candle soot: Equilibrium, kinetics and thermodynamics

  • Vishvendra Pratap Singh
  • Rahul Vaish
Regular Article
  • 10 Downloads

Abstract.

Candle soot was collected and successfully applied as an adsorbent for the removal of two basic dyes (methylene blue and rhodamine B). A batch study of adsorption experiments was done and the effects of parameters like time of contact, adsorbent and adsorbate dosage, temperature and pH of solution were studied. The optimum soot quantity for both dyes removal was found to be 0.2g/30 ml. The time taken to reach the quasi-equilibrium was 150 minutes. The effective pH for removal of methylene blue and rhodamine B was 12 and 6, respectively. A thermodynamic study suggests that the adsorption process for both dyes is spontaneous. A kinetic study suggests that both pseudo first- and second-order equations best fit adsorption kinetic data and the Langmuir isotherm fits best equilibrium data. Ethanol was used as the desorption media for desorption of rhodamine B from candle soot. The adsorbent was also found recyclable up to certain cycles.

References

  1. 1.
    S. Gilje et al., Nano Lett. 7, 3394 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    C. Berger et al., Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L. Quercia et al., Sens. Actuators B Chem. 100, 22 (2004)CrossRefGoogle Scholar
  4. 4.
    T.-W. Kim et al., Nano Lett. 8, 3724 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Xue et al., Environ. Sci. Technol. Lett. 5, 14 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Kakunuri, C.S. Sharma, Electrochim. Acta 180, 353 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Seo, M. Kim, Carbon 68, 583 (2014)CrossRefGoogle Scholar
  8. 8.
    K.D. Esmeryan et al., Appl. Surf. Sci. 369, 341 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L. Xiao et al., ACS Appl. Nano Mater. 1, 1204 (2018)CrossRefGoogle Scholar
  10. 10.
    A.E. Kandjani et al., Chem. Mater. 28, 7919 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Zhou et al., Sens. Actuators B: Chem. 209, 744 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Zhang et al., RSC Adv. 4, 2586 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Wei et al., Tribol Lett. 53, 521 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Oliva, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2013) p. 012019Google Scholar
  15. 15.
    Larry K. Lowry, William P. Tolos, Mark F. Boeniger, Charles R. Nony, Malcolm C. Bowman, Toxicol. Lett. 7, 29 (1980)CrossRefGoogle Scholar
  16. 16.
    G. McKay, J. Chem. Technol. Biot. 32, 759 (1982)CrossRefGoogle Scholar
  17. 17.
    C. Namasivayam et al., Bioresour. Technol. 57, 37 (1996)CrossRefGoogle Scholar
  18. 18.
    I.D. Mall, V.C. Srivastava, N.K. Agarwal, Dyes Pigments 69, 210 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Ahmad, B. Hameed, J. Hazard. Mater. 175, 298 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Wang et al., Desalination 254, 68 (2010)CrossRefGoogle Scholar
  21. 21.
    M.D.G. de Luna et al., J. Taiwan Inst. Chem. Eng. 44, 646 (2013)CrossRefGoogle Scholar
  22. 22.
    V. Gupta et al., J. Hazard. Mater. 186, 891 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Namasivayam, D. Prabha, M. Kumutha, Bioresour. Technol. 64, 77 (1998)CrossRefGoogle Scholar
  24. 24.
    V. Gupta et al., Ind. Eng. Chem. Res. 44, 3655 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Gong et al., J. Hazard. Mater. 121, 247 (2005)CrossRefGoogle Scholar
  26. 26.
    I. Tan, A. Ahmad, B. Hameed, Desalination 225, 13 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Regti et al., Microchem. J. 130, 129 (2017)CrossRefGoogle Scholar
  28. 28.
    B.N. Sahoo, B. Kandasubramanian, Mater. Chem. Phys. 148, 134 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Sadezky et al., Carbon 43, 1731 (2005)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2, 557 (1990)CrossRefGoogle Scholar
  31. 31.
    D.N. Shooto, E.D. Dikio, Int. J. Electrochem. Sci. 6, 1269 (2011)Google Scholar
  32. 32.
    B.N. Sahoo, B. Kandasubramanian, RSC Adv. 4, 11331 (2014)CrossRefGoogle Scholar
  33. 33.
    N.K. Amin, Desalination 223, 152 (2008)CrossRefGoogle Scholar
  34. 34.
    M.C.T. Largura et al., Sep. Sci. Technol. 45, 1490 (2010)CrossRefGoogle Scholar
  35. 35.
    R. Jain et al., J. Environ. Manag. 85, 956 (2007)CrossRefGoogle Scholar
  36. 36.
    D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. 10, S1445 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Lagergren, Ksver. Veterskapsakad. Handl. 24, 1 (1898)Google Scholar
  38. 38.
    Y.-S. Ho, G. McKay, Process. Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  39. 39.
    C. Aharoni, S. Sideman, E. Hoffer, J. Chem. Technol. Biotechnol. 29, 404 (1979)CrossRefGoogle Scholar
  40. 40.
    W.J. Weber Jr., J.C. Morrisr, J. Sanit. Eng. Div. ASCE 89, 31 (1963)Google Scholar
  41. 41.
    E. Tütem, R. Apak, Ç.F. Ünal, Water Res. 32, 2315 (1998)CrossRefGoogle Scholar
  42. 42.
    V. Poots, G. McKay, J. Healy, J. Water Pollut. Control Fed. 50, 926 (1978)Google Scholar
  43. 43.
    S. Allen, G. Mckay, K. Khader, Environ. Pollut. 56, 39 (1989)CrossRefGoogle Scholar
  44. 44.
    H. Freundlich, J. Phys. Chem. 57, 1100 (1906)Google Scholar
  45. 45.
    M. Temkin, V. Pyzhev, Acta Physiochim. 12, 217 (1940)Google Scholar
  46. 46.
    M. Dubinin, Carbon 23, 373 (1985)CrossRefGoogle Scholar
  47. 47.
    I. Tan, B. Hameed, A. Ahmad, Chem. Eng. J. 127, 111 (2007)CrossRefGoogle Scholar
  48. 48.
    G. Stavropoulos, A. Zabaniotou, Microporous Mesoporous Mater. 82, 79 (2005)CrossRefGoogle Scholar
  49. 49.
    Y. Kim et al., J. Environ. Sci. Technol. 38, 924 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringIndian Institute of TechnologyMandiIndia

Personalised recommendations