Advertisement

Polarization and Ni content effects on structural properties, electrical conductivity, complex impedance and dielectric constant of Co-Mg-ferrites

  • R. Jemaï
  • R. Lahouli
  • H. Rahmouni
  • S. Hcini
  • K. Khirouni
Regular Article
  • 13 Downloads

Abstract.

Pechini sol-gel technique was used to prepare Mg0.6-xNixCo0.4Fe2O4 (x = 0 , 0.2, 0.4 and 0.6)-ferrite materials. Then, X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy techniques are used to investigate the structural, morphological, electrical and dielectric properties. The X-ray diffraction patterns show that the prepared samples have a single phase. The SEM micrograph shows that the particle has an unchanging grain size distribution. Electrical measurements show that the DC conductivity is sensitive to temperature. Then, it is well noticed that the Mott and Davis law is governed by the small polaron hopping model. Also, impedance measurements show that the real part of impedance is extensively reduced when applying a voltage bias of \( V_{p}=10\) V. Such behavior can be related to the reduction of the available density of trapped charge. The results of Nyquist fitting are coherent with the electrical measurements according to which the sample with the highest DC conductivity possesses the lowest grain boundary resistance. Dielectric measurements confirm that the thermal evolution of the dielectric constant of the samples containing intermediary amounts of Ni (x = 0.2 and x = 0.4 is classical and show that the dielectric transition temperature is affected by polarization.

References

  1. 1.
    Muhammad Javed Iqbal, Zahoor Ahmad, Turgut Meydan, Yevgen Melikhov, J. Appl. Phys. 111, 0033906 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Hashim, A. Muddina, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, J. Alloys Compd. 511, 107 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Laishram, S. Phanjoubam, H.N.K. Sarna, C. Prakash, J. Phys. D: Appl. Phys. 32, 2151 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Gabal, Y.M. Al Angari, H.M. Zaki, J. Magn. & Magn. Mater. 363, 6 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Mukesh C. Dimri, A. Verma, Subhash C. Kashyap, D.C. Dube, O.P. Thkur, Chandra Prakash, Mater. Sci. Eng. B 133, 42 (2006)CrossRefGoogle Scholar
  6. 6.
    Elaa Oumezzine, Sobhi Hcini, Mohamed Baazaoui, E.K. Hlil, J. Alloys Compd. 656, 676 (2016)CrossRefGoogle Scholar
  7. 7.
    Muddassar Naeem, Nazar Abbas Shah, Iftikhar Hussain Gul, Asghari Maqsood, J. Alloys Compd. 487, 739 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Rezlescu, N. Rezlescu, C. Paniscu, D.P. Popa, J. Phys. D: Appl. Phys. 117, 448 (1992)Google Scholar
  9. 9.
    M.L. Craus, E. Rezlescu, N. Rezlescu, Phys. Status Solidi 133, 439 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Dorman, D. Fiorani (Editors), Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992)Google Scholar
  11. 11.
    M. Kishimoto, Y. Sakurai, T. Ajima, J. Appl. Phys. 76, 7506 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    S. Son, M. Taheri, E. Carpenter, V.G. Harris, M.E. McHenry, J. Appl. Phys. 91, 7589 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Amer, T.M. Meaz, A.G. Mostafa, H.F. El-Ghazally, Mater. Res. Bull. 67, 207 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Films 407, 109 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, H. Tian, J. Am. Ceram. Soc. 88, 3535 (2005)CrossRefGoogle Scholar
  16. 16.
    P.E. Meskin, V.K. Ivanov, A.E. Barantchikov, B.R. Churagulov, Y.D. Tretyakov, Ultrason. Sonochem. 13, 4 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Shi, J. Ding, X. Liu, J. Wang, J. Magn. & Magn. Mater. 205, 249 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Liu, H. He, X. Jin, Z. Hao, Z. Hu, Mater. Res. Bull. 36, 2357 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. & Magn. Mater. 277, 350 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S. Komarneni, E. Fregeau, E. Breval, R. Roy, J. Am. Ceram. Soc. Commun. 71, 26 (1988)Google Scholar
  21. 21.
    A.H. Morrish, K. Haneda, J. Appl. Phys. 52, 2496 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    D.W. Johnson, J. Am. Ceram. Soc. Bull. 60, 221 (1981)Google Scholar
  23. 23.
    C.H. Marcilly, P. Courty, B. Delmon, J. Am. Ceram. Soc. 53, 56 (1970)CrossRefGoogle Scholar
  24. 24.
    Ph. Courty, H. Ajot, Ch. Macilly, B. Delmon, Powder Technol. 7, 21 (1973)CrossRefGoogle Scholar
  25. 25.
    Rimi Sharma, Sonal Singhal, Physica B 414, 83 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Uzma Ghazanfar, S.A. Siddiqi, G. Abbas, Mater. Sci. Eng. B 118, 132 (2005)CrossRefGoogle Scholar
  27. 27.
    M.U. Islam, T. Abbas, Shahida B. Niazi, Zubair Ahmad, Sadia Sabeen, M. Ashraf Chaudhry, Solid State Commun. 130, 353 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. & Magn. Mater. 320, 270 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    L.J. Berchmans, R.K. Selvan, P.N.S. Kumar, J. Magn. & Magn. Mater. 279, 103 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Hoque, M.A. Choudury, M.F. Islam, J. Magn. & Magn. Mater. 251, 292 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M. Islam, K.A. Hashmi, M.U. Rana, T. Abbas, Solid State Commun. 121, 51 (2002)CrossRefGoogle Scholar
  32. 32.
    A.R. Bueno, M.L. Gregori, M.C.S. N, Mater. Chem. Phys. 105, 229 (2007)CrossRefGoogle Scholar
  33. 33.
    I.H. Gul, F. Amin, A.Z. Abbasi, M.A. Rehman, A. Maqsood, Scr. Mater. 56, 497 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Rahmouni, A. Benali, B. Cherif, E. Dhahri, M. Boukhobza, K. Khirouni, M. Sajieddine, Physica B 31, 466 (2015)Google Scholar
  35. 35.
    Ekaphan Swatsitang, Sumalin Phokha, Sitchai Hunpratub, Brian Usher, Atipong Bootchanont, Santi Maensiri, Prinya Chindaprasirt, J. Alloys Compd. 664, 792 (2016)CrossRefGoogle Scholar
  36. 36.
    R.M. Rosnan, Z. Othaman, A.A. Ati, Adv. Mater. Res. 1109, 355 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Houshiar, L. Jamilpanah, Mater. Res. Bull. 98, 213 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Chakrabarty, A. Dutta, M. Pal, J. Magn. & Magn. Mater. 461, 69 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Le-Zhong Li, Long Peng, Xiao-XiZhong, Rui Wang, Xiao-Qiang Tu, J. Magn. & Magn. Mater. 419, 407 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    R. Jemai, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, J. Alloys Compd. 705, 340 (2017)CrossRefGoogle Scholar
  41. 41.
    Manich Srivastava, S. Chaubey, Anime ChiK Ojha, Mater. Chem. Phys. 118, 174 (2009)CrossRefGoogle Scholar
  42. 42.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606 (2009)CrossRefGoogle Scholar
  43. 43.
    Elaa Oumezzine, Sobhi Hcini, Mohamed Baazaoui, E.K. Hlil, Mohamed Oumezzine, Powder Technol. 278, 189 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)CrossRefGoogle Scholar
  45. 45.
    Ahmed Selmi, S. Hcini, H. Rahmouni, A. Omri, Mohamed Lamjed Boazizi, Abdessalem Dhahri, Phase Trans. (2017)  https://doi.org/10.1080/01411594.2017.1309403
  46. 46.
    K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellami, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Physica B 407, 795 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, J. Magn. & Magn. Mater. 327, 159 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    M.A. Gabal, Y.M. Al Angari, H.M. Zaki, J. Magn. & Magn. Mater. 363, 6 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Mazen, A.M. El Taher, J. Alloys Compd. 498, 19 (2010)CrossRefGoogle Scholar
  50. 50.
    M.A. Gabal, Y.M. AlAngari, H.M. Zaki, J. Magn. & Magn. Mater. 363, 6 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  52. 52.
    V.D. Kapse, S.A. Ghosh, F.C. Raghuwanshi, S.D. Kapse, U.S. Khandekar, Talanta 78, 19 (2009)CrossRefGoogle Scholar
  53. 53.
    Ming Li, Antonio Feteira, Derek C. Sinclair, J. Appl. Phys. 105, 114109 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M. Smari, H. Rahmouni, N. Elghoul, I. Walha, E. Dhahri, K. Khirouni, RSC Adv. 5, 2177 (2015)CrossRefGoogle Scholar
  55. 55.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    D. Johnnson, ZView: A software program for IES analysis, Version 2.8, Southern Pines (NC: Scriber Assocates, Inc., 2008)Google Scholar
  57. 57.
    Sami Kallel, Ammar Nasri, Nabil Kallel, Hedi Rahmouni, Octavio Pen, Kamel Khirouni, Mohamed Oumezzine, J. Phys. B 406, 2172 (2011)CrossRefGoogle Scholar
  58. 58.
    S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloys Compd. 574, 290 (2013)CrossRefGoogle Scholar
  59. 59.
    Dinesh Varshney, Kavita Verma, Mater. Chem. Phys. 140, 412 (2013)CrossRefGoogle Scholar
  60. 60.
    Prasit Thongbai, Santi Maensiri, Teerapon Yamwong, J. Appl. Phys. 104, 036107 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (John Wiley and Sons, New York, 1990) p. 189Google Scholar
  62. 62.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics (John Wiley and Sons, New York, 1990) p. 205Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Jemaï
    • 1
  • R. Lahouli
    • 2
  • H. Rahmouni
    • 2
  • S. Hcini
    • 3
  • K. Khirouni
    • 1
  1. 1.Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée àl’Environnement, Faculté des Sciences de Gabes cite ErriadhUniversité de GabesGabesTunisia
  2. 2.Unité de recherche Matériaux Avancés et Nanotechnologies, Institut Supérieur des Sciences Appliquées et de Technologie de KasserineUniversité de KairouanKasserineTunisia
  3. 3.Research unit of valorization and optimization of exploitation of resources, Faculty of Science and Technology of SidiBouzidUniversity of KairouanSidiBouzidTunisia

Personalised recommendations