Advertisement

On the size-dependent magneto/electromechanical buckling of nanobeams

  • Batoul Alibeigi
  • Yaghoub Tadi BeniEmail author
Regular Article
  • 52 Downloads

Abstract.

Bending and buckling of piezoelectric and piezomagnetic nanobeams are investigated based upon the Euler-Bernoulli beam model and using the strain gradient theory, which is capable of accounting for higher-order magneto/electromechanical coupling as well as size effects. Governing equations and boundary conditions are extracted using the principle of minimum potential energy, and electrical and mechanical field distributions are computed using the equations obtained. The size effect is accounted for using the strain gradient theory, and nanobeam buckling is analyzed using the nonlinear von Kármán strain. Nanobeam bending and buckling are examined through the Galerkin procedure. The impact of parameters such as size effects, length, thickness, material properties, external voltage, and magnetic potential is investigated, and critical load, critical voltage, and critical magnetic potential of buckling are shown to be considerably dependent upon size effects, particularly as thickness increases.

References

  1. 1.
    J.H. Huang, Phys. Rev. B 58, 12 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    J. Curie, P. Curie, Bull. Soc. Mineral. France 3, 90 (1880)CrossRefGoogle Scholar
  3. 3.
    Y.E. Pak, J. Appl. Mech. 57, 647 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Foda, A.A. Almajed, M.M. ElMadany, Smart Mater. Struct. 19, 115018 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S. Chesne, C. Pezerat, Smart Mater. Struct. 20, 075009 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    W.M. Zhang, G. Meng, D.I. Chen, Sensors 7, 760 (2007)CrossRefGoogle Scholar
  7. 7.
    W.M. Zhang, O. Tabata, T. Tsuchiya, G. Meng, Phys. Lett. A 375, 2903 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    G. Harshe, J.P. Dougherty, R.E. Newnham, Int. J. Appl. Electromagn. Mater. 4, 145 (1993)Google Scholar
  9. 9.
    C.W. Nan, Phys. Rev. B 50, 6082 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Nan, F.S. Jin, Phys. Rev. B 48, 8578 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Benveniste, Phys. Rev. B 51, 16424 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    F. Kheibari, Y. Tadi Beni, Mater. Design 114, 572 (2017)CrossRefGoogle Scholar
  13. 13.
    Z.L. Wang, Mater. Sci. Eng. Rep. 64, 33 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Fattahian Dehkordi, Y. Tadi Beni, Int. J. Mech. Sci. 128--129, 125 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Takeguchi, M. Shimojo, R. Che, K. Furuya, J. Mater. Sci. 41, 2627 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Y.T. Beni, J. Mech. 33, 289 (2017)CrossRefGoogle Scholar
  17. 17.
    S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertness, N.A. Sanford, Appl. Phys. Lett. 91, 203117 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    P. Fei, P.H. Peng Yeh, J. Zhou, S. Xu, Y. Gao, J. Song, Y. Gu, Y. Huang, Z.L. Wang, Nano Lett. 9, 3435 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. He, C.L. Hsin, J. Liu, L.J. Chen, Z.L. Wang, Adv. Mater. 19, 781 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Ebrahimi, Y. Tadi Beni, Steel Compos. Struct. 22, 1301 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Mehralian, Y.T. Beni, R. Ansari, Int. J. Mech. Sci. 119, 155 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Mehralian, Y.T. Beni, R. Ansari, Compos. Struct. 152, 45 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Mehralian, Y.T. Beni, J. Braz. Soc. Mech. Sci. Eng. 40, 27 (2018)CrossRefGoogle Scholar
  24. 24.
    R. Agrawal, B. Peng, E.E. Gdoutos, H.D. Espinosa, Nano Lett. 8, 3668 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Nano Lett. 7, 3691 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    B. Alibeigi, Y.T. Beni, F. Mehralian, Eur. Phys. J. Plus 133, 133 (2018)CrossRefGoogle Scholar
  28. 28.
    K. Kiani, Physica E 43, 387 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Y.T. Beni, A. Koochi, M. Abadyan, Physica E 43, 979 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    R. Omidian, Y.T. Beni, F. Mehralian, Eur. Phys. J. Plus 132, 481 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Gürses, B. Akgöz, Ö. Civalek, Appl. Math. Comput. 219, 3226 (2012)MathSciNetGoogle Scholar
  32. 32.
    Ö. Civalek, C. Demir, Appl. Math. Comput. 289, 335 (2016)MathSciNetGoogle Scholar
  33. 33.
    K. Mercan, Ö. Civalek, Compos. Struct. 143, 300 (2016)CrossRefGoogle Scholar
  34. 34.
    W.J. Chen, X.P. Li, Arch. Appl. Mech. 83, 431 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    K. Mercan, Ö. Civalek, Compos. Part B: Eng. 114, 34 (2017)CrossRefGoogle Scholar
  36. 36.
    H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solids 56, 3379 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    S.K. Park, X.L. Gao, J. Micromech. Microeng. 16, 2355 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A. Anthoine, Int. J. Solids Struct. 37, 1003 (2000)CrossRefGoogle Scholar
  39. 39.
    F.A.C.M. Yang, A.C.M. Chong, D.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.T. Beni, A. Koochi, M. Abadyan, Int. J. Optomechatron. 8, 47 (2014)CrossRefGoogle Scholar
  41. 41.
    B. Akgöz, Ö. Civalek, J. Comput. Theor. Nanosci. 8, 1821 (2011)CrossRefGoogle Scholar
  42. 42.
    A.V. Krysko, J. Awrejcewicz, M.V. Zhigalov, S.P. Pavlov, V.A. Krysko, Int. J. Non-Linear Mech. 93, 96 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    T. Meressi, B. Paden, J. Guidance, Control, Dyn. 16, 977 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 49, 1268 (2011)CrossRefGoogle Scholar
  45. 45.
    M.A. Khorshidi, M. Shariati, S.A. Emam, Int. J. Mech. Sci. 110, 160 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Abu-Salih, D. Elata, J. Microelectromech. Syst. 15, 1656 (2006)CrossRefGoogle Scholar
  47. 47.
    D. Elata, S. Abu-Salih, Analysis and experimental validation of electromechanical buckling, in TRANSDUCERS 2007. International Solid-State Sensors, Actuators and Microsystems Conference, 2007 (IEEE, 2007) pp. 1669--1672Google Scholar
  48. 48.
    Y. Tadi Beni, J. Intell. Mater. Syst. Struct. 27, 2199 (2016)CrossRefGoogle Scholar
  49. 49.
    M. Shojaeian, Y.T. Beni, Sensors Actuators A 232, 49 (2015)CrossRefGoogle Scholar
  50. 50.
    F. Ebrahimi, E. Salari, Smart Mater. Struct. 24, 125007 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    S.P. Thompson, J. Loughlan, Compos. Struct. 32, 59 (1995)CrossRefGoogle Scholar
  52. 52.
    S. Hu, S. Shen, Comput. Mater. Contin. 13, 63 (2009)Google Scholar
  53. 53.
    L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    L. Xu, S. Shen, Int. J. Appl. Mech. 5, 1350015 (2013)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Y.T. Beni, Mech. Res. Commun. 75, 67 (2016)CrossRefGoogle Scholar
  56. 56.
    A. Shahba, R. Attarnejad, S. Hajilar, Shock Vib. 18, 683 (2011)CrossRefGoogle Scholar
  57. 57.
    G.C. Tsiatas, Arch. Appl. Mech. 84, 615 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    F.A.C.M. Yang, A.C.M. Chong, D.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  59. 59.
    D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    M.S. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B 77, 125424 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    X.F. Li, B.L. Wang, K.Y. Lee, J. Appl. Phys. 105, 074306 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    S. Kong, S. Zhou, Z. Nie, K. Wang, Int. J. Eng. Sci. 47, 487 (2009)CrossRefGoogle Scholar
  63. 63.
    K.A. Lazopoulos, A.K. Lazopoulos, Eur. J. Mech. A/Solids 29, 837 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    L.E. Cross, Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients, in Frontiers of Ferroelectricity (Springer, US, 2006) pp. 53--63Google Scholar
  65. 65.
    J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)CrossRefGoogle Scholar
  66. 66.
    M. Şimşek, J.N. Reddy, Compos. Struct. 101, 47 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentShahrekord UniversityShahrekordIran
  2. 2.Faculty of EngineeringShahrekord UniversityShahrekordIran

Personalised recommendations