Advertisement

Convergence analysis of tau scheme for the fractional reaction-diffusion equation

  • Jalil Rashidinia
  • Elham Mohmedi
Regular Article

Abstract.

In this paper, an efficient numerical scheme is presented in order to solve the time Caputo fractional reaction-diffusion equation. This method is based on the Legendre tau spectral method combined with the generalized shifted Legendre operational matrix, and our main purpose is to reduce the given equation to the solution of a system of algebraic equations. The greatest advantage of this approach is its spectral convergence, and our focus is to derive the error estimate and convergence analysis of this scheme for the fractional reaction-diffusion equation. In order to illustrate the validity and the efficiency of this scheme, five test examples are provided and also numerical results are compared with the results of existing schemes.

References

  1. 1.
    A. Mohebbi, M. Abaszadeh, M. Dehghan, J. Comput. Methods Appl. Mech. Eng. 264, 163 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Wang, J. Liu, C. Gong, X. Tans, G. Fu, Z. Xing, Adv. Differ. Equ.,  https://doi.org/10.1186/s13662-016-0929-9 (2016)
  3. 3.
    C.-M. Chen, F. Liu, V. Anha, Comput. Appl. Math. 223, 777 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C.-M. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Wu, Appl. Numer. Math. 30, 1533 (2009)Google Scholar
  6. 6.
    T.A.M. Langlands, B.I. Henry, J. Comput. Phys. 205, 719 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Liu, P. Zhuang, K. Burrage, Comput. Math. Appl. 64, 2990 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    E.H. Doha, A.H. Bhravyy, S.S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Nasrollahzadeh, S.M. Hosseini, Iran. J. Math. Sci. Inform. 11, 71 (2016)MathSciNetGoogle Scholar
  10. 10.
    C. Gong, W. Bao, G. Tang, B. Yang, J. Liu, J. Supercomput.,  https://doi.org/10.1007/s11227-014-1123-z (2014)
  11. 11.
    C. Gong, W. Gong, W. Bao, G. Tang, Y. Jiang, J. Liu, Sci. World J.,  https://doi.org/10.1155/2014/681707 (2014)
  12. 12.
    E. Shivanian, A. Jafarabadi, Eng. Comput.,  https://doi.org/10.1007/s00366-017-0522-1 (2017)
  13. 13.
    K. Shah, H. khalil, R.A. Khan, LMS J. Comput. Math. 20, 11 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M.G. Sakar, Y. Yil, J. Optim. Theory Appl. 174, 530 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Dehghan, M. Abbaszadeh, Eng. Comput.,  https://doi.org/10.1007/s00366-016-0491-9 (2016)
  16. 16.
    N.J. Ford, J. Xiao, Y. Yan, Int. J. Theory. Appl. 14, 3 (2011)Google Scholar
  17. 17.
    S. Maitama, Math. Eng. Sci. Aerospace 8, 521 (2017)Google Scholar
  18. 18.
    Z.Q. Xing, Y. Duan, Y.M. Zheng, J. Fract. Calc. Appl. 8, 6 (2017)MathSciNetGoogle Scholar
  19. 19.
    E. Pindza, K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 40, 112 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Burrage, N. Hale, D. kay, R.A. Khan, SIAM J. Sci. Comput. 34, A2145 (2012)CrossRefGoogle Scholar
  21. 21.
    K.M. Furati, M. Yousuf, A.Q.M. Khaliq, Int. J. Comput. Math.,  https://doi.org/10.1080/00207160.2017.1404037 (2017)
  22. 22.
    K.M. Owolabi, Eur. Phys. J. Plus 133, 98 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Zheng, F. Liu, Q. Liu, K. Burrage, M.J. Simpson, J. Comput. Phys. 338, 493 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    N.A. Khan, N.-U. Khan, A. Ara, M. Jamil, J. King Saud Univ.-Sci. 24, 111 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Agarwal, S. Jain, R.P. Agarwal, Fract. Differ. Calc. 7, 169 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Das, P.K. Gupta, P. Ghosh, Appl. Math. Model. 35, 4071 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arafa, J. Commun. Non-linear Sci. Numer. Simul. 15, 3847 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    L. Liu, X. Fu, Taiwanese, J. Math. 22, 95 (2018)Google Scholar
  29. 29.
    Q. Yu, F. Liu, V. Anh, L. Turner, Int. J. Numer. Methods Eng. 74, 138 (2007)CrossRefGoogle Scholar
  30. 30.
    E.H. Hernandez-Martinez, F. Valdes-Parada, J. Alvarez-Ramirez, H. Puebla, E. Morales-Zarate, J. Math. Comput. Simul. 121, 133 (2016)CrossRefGoogle Scholar
  31. 31.
    M.G. Brikaa, J. Int. Approxim. Sci. Comput. 2, 112 (2015)MathSciNetGoogle Scholar
  32. 32.
    S. Shen, F. Liu, V. Anh, Numer. Algor. 56, 383 (2011)CrossRefGoogle Scholar
  33. 33.
    F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 191, 12 (2007)MathSciNetGoogle Scholar
  34. 34.
    M. Cui, J. Comput. Phys. 231, 2621 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Jiang, J. Ma, Comput. Appl. Math. 235, 3285 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Rashidinia, Hs. Shekarabi, Ain. Shams. Eng. J.,  https://doi.org/10.1016/j.asej.2016.10.005 (2016)
  37. 37.
    V.R. Hosseini, E. Shivanian, J. Comput. Phys. 312, 307 (2016)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M.H. Heydari, M.R. Hooshmandsl, F.M. Maalek Ghaini, C. Cattani, Phys. Lett. A 379, 71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Z. Kargar, H. Saeedi, Int. J. Wavelets Multires. Inf. Process. 15, 1750034 (2017)CrossRefGoogle Scholar
  40. 40.
    M.R. Permoon, J. Rashidinia, A. Parsa, H. Haddadpour, R. Salehi, J. Mech. Sci. Tech. 30, 3001 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Guo, L. Mei, Y. Li, X. Tans, Comput. Math. Appl. 74, 2449 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Y. Yang, Y. Chen, Y. Huang, H. Wei, Comput. Math. Appl. 73, 1218 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    A.H. Bahrawy, E.H. Doha, D. Baleanu, S.S. Ezz-Eldien, J. Comput. Phys. 293, 142 (2015)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    M.A. Zaky, Comput. Math. Appl.,  https://doi.org/10.1016/j.camwa.2017.12.004 (2017)
  46. 46.
    P. Mokhtary, F. Ghoreishi, Numer. Algor. 58, 475 (2011)CrossRefGoogle Scholar
  47. 47.
    P. Mokhtary, Appl. Numer. Math. 121, 52 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    S. Karimi Vanani, A. Aminataei, J. Comput. Math. Appl. 62, 1075 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Aslefallah, E. Shivanian, Eur. Phys. J. Plus 130, 47 (2015)CrossRefGoogle Scholar
  50. 50.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  51. 51.
    A. Saadatmandi, M. Mohabbati, Math. Rep. 17, 155 (2015)Google Scholar
  52. 52.
    E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, J. Comput. Nonlinear Dyn. 10, 021019 (2015)CrossRefGoogle Scholar
  53. 53.
    Eh. Doha, J. Phys. A 37, 657 (2004)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Eh. Doha, A.H. Bhrawy, M.M. Tharwat, M.A. Alghamdi, Bull. Malays. Math. Soc. 37, 983 (2014)Google Scholar
  55. 55.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods, Fundamentals in single Domains (Springer, Berlin, 2006)Google Scholar
  56. 56.
    Y. Luke, The Special Functions and Their Approximations (Academic Press, New York, 1969)Google Scholar
  57. 57.
    V.R. Hosseini, W. Chen, Z. Avazzadeh, Eng. Anal. Bound. Elem. 38, 31 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsIran University of Science and TechnologyTehranIran

Personalised recommendations